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1. INTRODUCTION

The configuration interaction (CI) method is a general
procedure to compute approximate solutions to the electronic
Schrodinger equation. The wave function is written as a linear
expansion

Naim
W) = X gl (1)
j=1
with expansion functions |j) and expansion coefficients ¢;. A
common feature of CI methods is that the expansion coefficients
are determined variationally. A trial energy is typically an

expectation value, written as the Rayleigh quotient

Etnal =p= 2

W) @
and the CI energy is determined from the relation dp/dc = 0.
This leads to the standard hermitian eigenvalue equation

H = Ekck (3)

with the matrix elements H; = (j|H|l). The ground state
corresponds to the lowest energy solution, and excited states
correspond to higher solutions. Thus the CI method is concep-
tually very general and simple, and therefore it has been used
since the beginning of molecular quantum mechanics. In the
1950s and 1960s it was the primary source of correlated results,
and these calculations showed that electron correlation is essen-
tial to understand certain properties of atoms and molecules. The
review article by Shavitt' covers the important aspects of the CI
method up through 1977, and the later reviews by Duch,”
Shavitt,” Sherrill and Schaefer,* (Vjérsky,5 and Karwowski and

Shavitt® cover important developments through 2003. In this
paper, the important basic aspects of CI methods such as
expansion basis choices, truncation schemes, choice of orbitals,
diagonalization procedures, and size-consistency issues will be
summarized. Recent developments on gradient theory, calcula-
tion of molecular properties, and nonadiabatic coupling between
electronic states, as well as relativistic and spin-orbit effects will
be covered in more detail.

If all possible expansion terms are included in the expansion of
eq 1, then the result is the full-CI wave function. The solutions to
eq 3 in this case correspond to the exact solutions to the
Schrodinger equation within the given orbital basis. These are
the energies and the wave functions that all approximate orbital-
based electronic structure methods attempt to mimic. The
dimension of the full-CI expansion grows approximately as n"
for N electrons and n molecular orbitals and for N < n.
Consequently in practice, full-CI wave functions can be com-
puted only for small molecular systems and for relatively small
orbital basis sets, but these calculations serve as important
benchmarks to assess the accuracy, reliability, and characteristics
of other approximate methods.

There are N, linearly independent solutions to eq 3, and, for
ordered sequences of eigenvalues, truncated expansions satisfy
the bounds

E](Cfull —CI) < EZ((Ndim) (4)
B < MY < BN (s)

The first equation shows that the approximate energies are
always higher than the exact full-CI values, and the second
equation shows that convergence to those values occurs mono-
tonically with increasing wave function flexibility. These relations
allow a correspondence to be established between the exact full-
CI eigenvalues and the eigenvalues from a truncated expansion,
and it allows the convergence of a particular state to the exact
limit to be monitored as a function of the expansion dimension.
In addition, these bounds relations allow the convergence with
respect to orbital basis sets to be assessed and, in some cases,
extrapolated to the complete basis set (CBS) limit. In this
manner, both ground and excited states can be computed, and
given these wave functions, arbitrary expectation values and
transition properties may be evaluated in a straightforward
way. This generality and flexibility are important features of CI
methods. Equations 4 and 5 are satisfied at each molecular
conformation R, and thus these bounds relations apply not just
to isolated molecular conformations but also to description of the
behavior of the entire potential energy surfaces (PESs).

In most CI applications, eq 3 is solved simultaneously for both
the wave function expansion coefficients c* and for the energy E;.
However, consider the situation in which the coefficients are
known. In this case, the energy can be evaluated by considering
only a single row of eq 3.

(Be—Hy)¢ = ¥, Hyq (6)
1(# j)

If c]’»c # 0, then E; may be evaluated with effort that scales only as
the number of nonzero elements in the jth row of the matrix H.
There are only, at most, ~N*n* nonzero elements in a row of the
H matrix (including even the full-CI H matrix); thus the form
of eq 6 suggests a very economical way to compute an energy,
given the ¢* from some separate computational procedure.
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This transition-energy formula is the basis for many electronic
structure methods. The coefficients associated with the nonzero
elements of a single row are estimated in some fashion, and then
the energy is evaluated according to eq 6. Several of these
methods are discussed in section 2.

Many electronic structure methods may be characterized as
either single-reference (SR) or multireference (MR) approaches.
In a SR approach, a single Slater determinant is chosen as a
reference function, and some procedure is used to determine the
important Hamiltonian interactions with this reference function.
This typically involves either empirical or a priori selection
procedures that are based on perturbation theory, explicit
diagonalization within small subspaces, and combinations of
such approaches. The A; and By procedures described in ref 1
are typical examples of methods that are used in empirical
selection approaches, and excitation-limited expansions such as
SR-CISD, SR-CISDT, and SR-CISDTQ, etc., are typical exam-
ples of a priori selection approaches which include respectively
single + double, single + double + triple, and single + double +
triple + quaduple excitations with respect to the reference
function. The fundamental problem with these SR approaches
is that different regions of a molecular PES are often dominated
by different determinants. This means that an expansion based
on the dominant function at one conformation will result in a
poor description of the wave function at other conformations. SR
approaches also have difficulty describing multiple states because
the dominant reference function for one electronic state is often
not appropriate for describing other electronic states.

In a multireference approach,” all of the possible important
determinants, or configuratoin-state functions (CSFs), are first
identified. This may involve either an a priori approach or a
numerical selection procdedure. For example, in an MRCI
expansion based on an a priori full optimized reaction space
(FORS) or complete active space (CAS) reference, all possible
determinants constructed from the set of active orbitals are
treated as reference functions; the choice of the active orbital
space alone entirely determines the expansion space. In an
empirical selection approach, the important regions of the PESs
are scanned, perhaps with a small orbital basis set and with some
relatively cheap electronic structure method, and any important
determinants would be identified and selected numerically. Once
the reference space is determined, all of the individual determi-
nants are treated equivalently to generate the MRCI expansion
space. This may again be done either by empirical approach, with
numerical selection procedures, or with an a priori approach (see,
e.g, ref 1 for further discussions). For example, in a MR-CISD
expansion, all single and double excitations from each of the
reference functions are included. This additional flexibility,
relative to the SR approach, allows the wave function to describe
different regions of the PESs in a balanced manner and to
simultaneously describe multiple electronic states. The practical
difficulty with such MR expansions is that they require more
effort than the analogous excitation-limited SR approach. This
limits the size of the molecules and/or the size of the molecular
orbital basis sets that can be studied. In some cases, even the size
of the active orbital space, or the reference CSF space in general,
must be restricted due to practical limitations. These considera-
tions associated with MR approaches lead to the search for
methods that require less computational effort but still share the
important advantages of the MR approaches. These include, for
example, internally contracted approaches, externally contracted
approaches, and various fragment approaches in which the final

110

wave function is constructed as products (or more generally
sums of products) of molecular fragments. Such approaches will
be discussed further in section 2.

To our knowledge, the first MRCI calculation was performed
by Liu® on the H; molecule. Liu included in the expansion space
all CSFs which interacted with any of the reference functions.
Thus, practically speaking, it was an MR-CISD expansion. The
reference functions were selected emprically.

Since the expansion functions, either Slater determinants or
CSFs, depend on the choice of molecular orbitals, this choice will
greatly influence the quality of the wave function. Hence, the
choice of an orbital set has played an important role throughout
the history of the CI method. In SR approaches, the orbitals are
typically taken as the canonical SCF orbitals of the reference
function. However, other choices have involved natural
orbitals,”*° localized orbitals,"' ~'* and pair natural orbitals"> "7
that are chosen separately for different fragments of the wave
function, or orbitals chosen to mimic the virtual orbitals of a
hypothetical molecular ion."®'® In some situations, such as
reactions involving the cleavage of bonds, it is clear that SCF
orbitals are inappropriate due to artifactual charge contamination
of the reference wave function. In MR approaches, the orbitals
are usually taken from a multiconfiguration self-consistent field
(MCSCEF) calculation.'”?° In these cases, the reference space is
chosen to have sufficient flexibility in order to qualitatively
describe any important valence correlation effects such as
bond-breaking, avoided crossings, and spin-recoupling pro-
cesses. The reference space for the MRCI expansion is usually
taken as the entire MCSCF expansion space, but sometimes, due
primarily to computational limitations, only a selected subset of
the entire MCSCEF expansion space is chosen; at other times, due
to some inadequacy of the MCSCF expansion, additional
determinants might be added. Orbital invariance properties of
the MCSCF and MRCI expansions are often further utilized to
refine the molecular orbital expansion space. For example, orbital
localizations might be applied to both the occupied and the
virtual orbitals in the MCSCF expansion. Such procedures leave
the MCSCF wave function itself unchanged, but the subsequent
MRCI expansion can exploit this orbital localization through
reduction in the dimension of the CSF expansion space, approx-
imations within the Hamiltonian operator through the systema-
tic neglect of small interactions, or both. In other situations, the
MCSCEF wave function expansion itself is formulated in terms of
localized orbitals; examples of this approach include GVB-RCI
expansions and other direct-product types of expansion spaces.'

Because the eigenvalues from eq 3 are defined and computed
variationally, first-order response properties can be computed
with the Hellmann—Feynman theorem”" as simple expectation
values 0E/0A = (cik|8H/8/1|cik>. As discussed in section 2, this
expression uses the second-quantized Hamiltonian operator
which is defined in terms of the molecular orbitals. This requires
much less effort than an otherwise comparable nonvariational
method. One important application of this feature is the compu-
tation of analytic energy gradients, 0E;/0R, which are used for
the optimization of equilibrium molecular geometries, the com-
putation of saddle-point geometries to determine chemical
reaction barriers, for the determination of molecular forces that
are used in direct-dynamics trajectory calculations, and for
sophisticated PES surface fitting methods that use both energy
and gradient information. For MRCI wave functions, the effort
required to compute the entire gradient vector, consisting of
3N,tom elements when using Cartesian molecular coordinates,
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requires typically only a small fraction of the effort to compute
the energy itself.”" Further discussion and examples are provided
in sections 2 and 3.

Although the rather general form and the simple structure of
the CI wave function along with the hierarchical way of trunca-
tion to practical size are very appealing properties, the energy
corresponding to CI wave function truncated according to
excitation level will not scale properly with the size of the system;
i.e., excitation-level truncated Cl is not size-extensive*>** or, with
other terminology, not size-consistent.”* For a general definition
of these two closely related terms, refer to ref 25. Size-extensivity
is more related to many-body diagramtic formulations,”**” while
size-consistency is a propert}l of the method related to the
separability into subsystems.>**® Since CI is usually not formu-
lated with many-body tools, the scaling property of CI and its
corrections are mostly discussed with respect to the separation
limits. Therefore, in this review the term size-consistency will be
used. The lack of size-consistency hampers the investigation of
molecular systems of increasing size, since an ever-smaller
fraction of the correlation energy is computed, and in the limit
of infinite systems no correlation energy at all is computed. On
the other hand, the effect is not negligible even for middle-size
molecules, so a correction is desirable. Various methods to
compute this correction will be discussed in detail in section 2.

The lack of size-consistency of the truncated CI wave function
is easily understood by considering two noninteracting systems
by the SR-CID method. While the wave function of the super-
system treated as one entity includes only double excitations, the
product of the two SR-CID wave functions of the subsystems
must include quadruple excitation terms. Consequently, the
energy of the supersystem will not be size-consistent as it will
not be equal to the sum of the energies of the two subsystems. In
fact, it can be shown that the SR-CID correlation energy grows
with the square root of the system size instead of proportionally
to the system size.” This property holds for any excitation-level-
based truncation and disappears only in the case of full-CI where
the excitation level is naturally exhausted. Note that in the case of
CID, it is the lack of certain quadruple excitations that causes the
problem; this observation is important for understanding the
correction schemes discussed as follows. Also note that by
increasing the excitation level included in the CI wave function,
the missing terms that cause size-consistency errors will corre-
spond to higher excitations and this typically results in a decrease
of magnitude of the error. For the same reason, the size-
consistency error is expected to be smaller for multireference
expansions than for the single-reference expansions.

2. DISCUSSION

2.1. CI Method

2.1.1. Basic Terms and Notations. The nonrelativistic,
clamped nucleus, electronic Hamiltonian operator includes the
electronic kinetic energy, the electron—nuclear attraction, and
the electron—electron repulsion.

—h? z.7 7.2
H=V ty2 _ Lela ¢
2 2m, J + Z |rj7Ra| +

j ja

(7)

j>k|rf7rk|

Although the CI method may be viewed from either the first- or
second-quantization perspective, essentially all modern formula-
tions use the latter approach. The electronic Hamiltonian
operator is then written either in terms of spin-orbital creation

(a;) and annihilation (a,) operators

1
H= hpq“;“q + 5 )y (pq|rs)a;a:‘asaq (8)
pq pans

or in terms of the spatial-orbital indices using the spin-adapted
generators (E,;) and generator products (e,q) of the unitary

group

1
H = hpoEpq + 5 y (pqlrs)epqrs 9)
pq parns

using what is now accepted as standard notation conventions.® It
is sometimes convenient to treat the two-electron repulsion
integrals as the elements of an array g, = (pq|rs); both
notations are used herein.

The N-electron expansion functions are chosen typically to be
either primitive Slater determinants of spin-orbitals (the natural
bras and kets of the occupation-number representation) or
configuration state functions. CSFs are linear combinations of
Slater determinants that have the same spatial-orbital occupa-
tions and that are eigenfunctions of the total spin operator S* and
the spin projection along the z-axis S..

S*k; S, M) = S(S + 1)|k; S, M) (10)

S|k; S, M) = Mlk; S, M);
M= -8 -S+1,.., +S (11)

In these equations |k;S,M> is the CSF indexed by k and is
characterized by the spin quantum number S and the spin
projection eigenvalue M = ('/,)(N,, — Ng). N, and Nj are the
number of occupied & and f spin-orbitals, respectively, in each
of the determinants in the wave function expansion. Primitive
Slater determinants are typically eigenfunctions only of the S,
operator. Determinantal expansions are usually longer (because
they span several S values) than CSF expansions (which typically
are chosen to span only a single S value). On the other hand, the
one- and two-electron coupling coefficients in the determinantal
basis, <j|a;aq|k> and <j|a;a:asaq|k> (see eq 8), take on the values 0
and £1 only and are therefore somewhat simpler to evaluate than
the coupling coeflicients in the CSF basis, which are usually
written in terms of the spin-adapted generators, (j|E,4|k) and
<j|epq,5|k>. Consequently, various CI methods are implemented
with both types of formulations. Another important difference
between determinantal and CSF expansions is that the state
ordering may be different (e.g., the lowest eigenvalue in a CSF
basis might correspond to a higher eigenvalue in a determinantal
basis), and this association of the states may change across the
PESs (i.e., due to allowed crossings of states with different S
values). Although determinantal CI expansion spaces are usually
chosen so that there is no spin contamination (breaking of spin-
symmetry) in the converged wave functions, some wave function
optimization procedures are prone to introduce artificial con-
tamination at intermediate stages.” CSF expansions generally
avoid these spin-contamination issues.

There are two general approaches to generate the CI expan-
sion space: through excitations and through orbital occupation
restrictions. In a SR expansion, for example, a particular expan-
sion space might be generated through excitations from the
reference detrminant |1),) as

{031 = L.Nam} = {lwo) [0 [ lwi) .} (12)
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with

lpi) =

") = alajaanlio);
iy = (13)

The spin-orbital indices j, j, k, ... range over the occupied orbitals
in the reference determinant, and a, b, ¢, .. range over the
unoccupied (virtual) orbitals. The determinant |[) in eq 12 in the
wave function expansion space is therefore associated with some
combination of occupled and virtual orbltal indices. The expan-
sion function W;,) is a “single excitation” term in which the
occupied spin-orbital ¢; in the reference determinant is replaced
with virtual orbital ¢, |1/),] ) is a “double excitation” in which
two occupied spin-orbitals ¢; and ¢; in the reference determinant
are replaced with virtual orbitals ¢, and ¢, and so on for the
other expansion terms. In most applications, the excitations are
restricted to preserve the S, eigenvalue of the reference. A wave
function expanded in this space can be written as

) = colppo) + X clwd + XY alyy

ia i>ja>b

Y Gl +

i>j>k,u>b>c

“Zai|1/’0>§

Fotot )
alayal ara;a;|y,);

+ (14)

Coy €7 cl]b, ... are the expansion coeflicients. It is common for SR
methods to scale the wave function so that ¢y = (1/)0|1/)> =1; thisis
referred to as the intermediate normalization convention, in
constrast with the full normalization convention in which the
norm of the wave function is unity ((3|y) = 1). The full-CI
expansion occurs when all possible N-rank excitations are
included. Truncations of the expansion based on the overall
excitation level result in SR-CIS, SR-CISD, and SR-CISDT, etc.

The expansion space can also be defined in terms of spatial
orbital indices with the operators E; ep;q; and so on, but in this case
the expansion terms are typically linear combinations of deter-
minants rather than individual determinants. Further, the rela-
tions [E,;,S*] = [E,,S.] = [el,},m,Sz] = [e4;,4S:] = 0, and so on
ensure that the expanswn space generated with these operators
maintains the $* and S, eigenvalues of the reference |1).

The alternative approach to generating the expansion space
consists of imposing occupation restrictions on groups of orbitals
within the set of expansion determinants. All determinants that
satisfy the constraints are enumerated and retained in the expansion.
In the SR example above, the occupied spin-orbital subspace
would consist of 71, = N, + Ng spin-orbitals and the virtual spin-
orbital space would consist of the remaining #;,y = 21 — f1,cc
spin-orbitals. The reference wave function is the determinant
that has the 7, orbital space occupied by the N electrons, and
the n,;,, orbital space has zero occupation. The single-excitation
determinants are those that have the .. orbitals occupied by
N — 1 electrons and the n;, orbital space occupied by one
electron. The double-excitation determinants are those with the
foce OIbitals occupied by N — 2 electrons and the n, space
occupied by two electrons. In multireference approaches, the
orbital space is typically divided into several subsets of orbitals,
and only the determinants that satisfy the occupation limits on all
the subsets are included in the expansion space. Graphical
methods are often used to represent and enumerate the expan-
sion space in this form The graphical unitary group approach
(GUGA) of Shavitt®*® is an example of this approach for CSE
expansions. Various determlnant based graphical schemes are
also commonly used”” to specify expansion spaces. (See ref 6 for

112

a more complete discussion of graphical methods.) Most MCSCF
implementations, whether or not they are based on an underlying
graphical representation, use orbital subspace occupation restric-
tions to specify the wave function expansion space.

The practical differences in these two approaches become
apparent in MR expansions. In this case, a set of reference
functions {|m;ref); m = 1...N,¢} is used to generate the expansion
space. The set of excitation operators is applied to each reference
function to generate the expansion space:

al a,|m;ref);

[ (m)i)

b
|9 (m);") (15)
Unlike the single-reference situation, some of these expansion
terms may be zero (e.g, a particular spin-orbital ¢; may be
unoccupied in a particular reference function |m;ref)), and such

terms must be identified and eliminated. The wave function is
written in analogy to eq 14 as

[YMrer) = Z Cm|m) + Z Z C(m)?|1/)(m),a>

m

+X X

m i>ja>b

+Y X

m i>j>,a>b>c

form = 1...N,

alajaja;|m;ref); ...

c(m); [ (m);")

) + . (16)
In some cases, a particular excitation from one reference expan-
sion function can be identical to a different excitation from some
other reference expansion function; the inclusion of both terms
results in a linear dependency in the expansion space. Conse-
quently some method must be adopted to identify and eliminate
these redundant expansion terms from eq 16. Redundancies do
not occur in an occupation-based approach; a possible determi-
nant either succeeds or fails to satisfy the occupation restrictions,
and that alone determines its expansion index |I). Therefore the
resulting expansion space generated in this manner does not
suffer from linear dependence.

Equations for the wave function parameters (the expansion
coefficients) can be obtained from the variational principle by
minimizing the Rayleigh quotient eq 2. Equivalently, one can insert
the wave function into the Schrodinger equation and project onto the
space of excited determinants. For a double excitation, for example,

Y H = Eolg) + Y, ¢y [H — Eoly)

k¢
+ Y o |H Eolyii)
k>1,
c>d
4 Z |H Eolwcde
k>1>m,
c>d>e
+ Y G IH = Eolylh) = &' AE (17)

k>1>m>n,
c>d>e>f

For the correlation energy one obtains (in the case of SCF
orbitals)

dx.doi.org/10.1021/cr200137a |Chem. Rev. 2012, 112, 108-181
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AE= ¥ (yolHly) = ¥ & (18)

i>ja>b i>j

where the pair energy

& = Zb (o Hlwi)ei! (19)

has been introduced. Equations 17 and 18 are specific examples
of the transition energy expression in eq 6. The total energy is
given by E = AE + E,,, with E, being the energy corresponding to
the reference determinant |1).

Inspection of eq 17 reveals that the double excitation coeffi-
cients depend on the single, double, triple, and quadruple
coefficients only, but not on the higher rank coefficients. This
is because the Hamiltonian includes, at most, two-electron
excitation operators. If the wave function is truncated as in
CISD, the terms including triple and quadruple excited coeffi-
cients (the last two terms on the left-hand side of eq 17) will not

appear.
Wi’ [H — Eolpo) + Y, i’ |H — Eolyp)

k¢
y c;f<zp;"|H — Eo|yiy = cg"AE (20)
k>1
c>d

However, these neglected terms are comparable in size with

AE and therefore this approximation is not fully justified. To
see this, examine the term including the quadruple excitations in
eq 17. First, the matrrx element can be simplified by using the
Slater—Condon rules,*

Y H = Eolyia) = 0ulimOacOu (o H — Eolyidy  (21)

Second, the coefficients can be approximated by the leading term
of coupled-cluster theory

abed ., ab cd
Ct}kl ~ Cl; Cui (2’2)

With these considerations, the last term on the left-hand side of
eq 17 becomes

#ij,ab
Y eyl H — Eoly) (23)

k>lc>d

The restriction on the summation (that none of k, [, ¢, d can
coincide with i, j, k, |, denoted by #ij,ab), which comes from the
fact that in the quadruple excitations the same electron cannot be
excited twice, ensures that the so-called exclusion principle
violating (EPV) terms”> are excluded. Note also that this term
is very similar to the term on the right-hand side of eq 17 if the
expression for the correlation energy (eq 18) is inserted

G'AE = Y &ei(yolH — Eolyi (24)
k>lLc>d

Upon comparing eqs 23 and 24, it is seen that the two terms differ
only in the restricted summation indices in the former. If the
restrictions were ignored, there would be exact equivalence in the
two terms. This means that instead of simply ignoring higher
excitations from the CI equations, by also neglecting the

energy-dependent term, a more balanced approximation can be
defined. The method using this approximation goes by different
names;”" one such name is CEPA(0),>* and it is the lowest level
of the set of coupled electron pair approximation (CEPA)
methods. Due to its apparent and historical relation to CI, it is
discussed further below. Note that in this way, certain quadruple-
excitation contributions that are neglected in CISD, namely,
those responsible for the size-consistency error, are included in
the energy expression. However, eqs 23 and 24 do not cancel
exactly due to the restricted summation. This means that in
CEPA(0) the EPV terms are not properly accounted for. Further
versions of CEPA** address this problem by compensating for
the restricted summation in eq 23. (In the literature it is often
stated that CEPA methods “include EPV terms,” since those
terms remaining after the cancellation resemble EPV terms. Note
however, that inclusion of these terms means, on the contrary,
that the EPV terms have been properly handled. Since this
nomenclature is very misleading, it is avoided in this review,
and the terms “proper handling of EPV terms” or “compensating
for EPV terms” are used instead.) The review in ref 31 discusses
the proper handling of EPV terms in more detail.

Using the above approach, the CISD equations may be
corrected for the size-consistency error with various degrees of
partial to full cancellation. These are often referred to as the
CEPA type methods. Another possibility is to leave the CI
equations unchanged and to introduce a correction to the final
energy expression by considering the approximate change of the
CI coefficients due to the correction. For example, using CEPA-
(0)-type arguments, ie, approximating the effect of higher
excitations by ¢;; "AE, the change of the double-excitation coefhi-
cients can be apprommated as

AP = e (25)

/ W’gb W’u

which results in the change of the correlation energy

ahH Ct_{b
aap_ g WS

b T abN (26)
i>ja>b <1/)ijb|H|’¢)ijb

Recognizing that

(vlHlp,)
— N
(wlHlyg)

is the first-order approximation to the coefficients, the correction
formula may be simplified as

Y (¢')’AE (27)

i>ja>b

AAE =

Hrgher order correction can also be introduced by augmenting

by Ac;’ or by introducing a correction beyond CEPA(0).
Smce these methods are applied after the CI procedure, they are
commonly referred to as a posteriori corrections. A variety of
such approaches will be discussed in section 2.1.3.

2.1.2. Solution of the Cl Eigenvalue Equation. The
eigenvalue equation in eq 3 can be solved using either “direct”
or “iterative” numerical methods. Direct methods are those in
which the entire matrix is constructed and the individual matrix
elements are modified successively in some manner until the
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eigenvectors * and the eigenvalues E; are eventually computed.
For a matrix of dimension Ny;p,,, a typical direct method requires
O(N’4im.) computational effort and O(N’g,) storage and
computes some or all of the eigenpairs. Direct eigenvector
methods are among the most studied of linear algebra
problems. Reference 33 gives a complete review of methods
up through 1998.

The term “iterative” is somewhat of a misnomer because,
except for some trivial situations, all eigenvector solutions are
iterative at some level; even a simple 2 X 2 matrix involves the
computation of a square root, which itself requires an iterative
numerical solution. An “iterative” eigenvalue method is deemed
to be one in which the underlying iterative procedure drives the
overall numerical solution. Iterative methods are often based on
perturbation theory or gradient searches combined with varia-
tional methods, and they focus typically on the convergence of
selected eigenpairs rather than the full set of solutions. An
important class of iterative methods is based on subspace
expansion and includes the Lanczos and the Davidson methods
(see ref 33). These methods often do not require the computa-
tion or storage of individual Hamiltonian matrix elements but
instead require only the result of matrix—vector products w = Hx
for arbitrary expansion vectors x. The computational effort
thereby depends on the number of nonzero elements in the
matrix H (which is <N, for a sparse matrix), and the storage
requirements depend on the number of expansion vectors x. The
desired eigenvectors are eventually represented as linear combi-
nations of these expansion vectors.

CI methods are also classified"**** as either conventional-CI or
direct-CI. A conventional-CI approach is one in which the matrix
elements are explicitly constructed and stored. Either a direct or
an iterative diagonalization method may be used within a
conventional-CI approach. A direct-CI approach is one in which
the matrix—vector products within an iterative method are
computed in operator form “directly” from the underlying
one- and two-electron integrals. This is, of course, an un-
fortunate choice of terminology, but it should be clear that a
direct-CI approach is always associated with an iterative
diagonalization method. To further confuse this issue, there
are also AO-direct methods, sometimes also termed double-
direct methods; these are direct-CI methods in which the
required matrix—vector products are computed using the AO
two-electron repulsion integrals which are themselves recom-
puted on-the-fly each time they are needed during the iterative
procedure.

Due to the large dimensions of MRCI wave function expan-
sions, the eigenpairs of eq 3 are computed almost exclusively
using iterative approaches based on the Davidson subspace
method.>* 3% In direct-CI formulations, the contributions to w
are accumulated on the basis of convenient organizations of the
underlying two-electron repulsion integrals and the associated
coupling coeflicients. In well-organized codes, these underlying
operations typically involve dense matrix—vector and matrix—
matrix operations.”” ** This results in efficient computational
kernels that achieve near-peak performance on modern hard-
ware. The Davidson method is a subspace method, which means
that some number of expansion vectors {¥; j = l..m} are
collected together to form the columns of a matrix X, and the
eigenvectors c* are represented as linear combinations of these
basis functions

& = xé& (28)
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The optimal coefficients within this subspace are computed from
the subspace eigenvalue equation

H* = ScFp, (29)
with the matrices of dimension m defined as H = X"HX and
S = X"X. The subspace eigenvalues pj are called the Ritz values,
and the subspace eigenvectors ¢* are called the Ritz vectors (see,
e.g., ref 33 for a complete discussion). In some implementations
the subspace expansion vectors are chosen to be orthogonal, S =
1, while in others this constraint is not imposed, for example, in
order to reduce the I/O requirements each iteration. Typically,
the subspace dimension m changes throughout the iterative
procedure. The Ritz values p; are upper bounds to the eigenva-
lues E;. of the H matrix, and they satisfy the interlace property
corresponding to eqs 4 and S as the subspace dimension m
changes. Subspace vectors may be added, either one at a time or
in blocks,* until convergence is achieved. In many implementa-
tions, the dimension m may be reduced periodically in order to
decrease the overall storage requirements. This subspace reduc-
tion involves a contraction of the expansion vectors X"*"~—X°T
where the rectangular transformation matrix T depends on which
eigenpairs are being converged at the time of the contraction.
Subspace dimensions of m & 10—20 are typical for single-state
calculations, with dimensions up to m < 100 for multiple-state
calculations. For the largest of CI calculations, computational
resources may limit the maximum subspace dimension to smaller
values** m & 2 or 3. Thus the subspace matrix diagonalization in
eq 29 is relatively trivial and typically uses a direct (i.e., O(m’)
effort) diagonalization approach. Although the lowest root or
lowest few roots are usually desired, it is also possible to converge
selected interior roots using either root-homing or vector-
following approaches. In a root-homing approach, the subspace
eigenvalue, or eigenvalues, closest to some target value or range
are selected for improvement in the next iteration. In a vector-
following approach, the approximate vector, or vectors, with the
largest overlaps to some set of predefined reference vectors
{c'% k= 1,m'} are selected.

A crucial step of the iterative procedure is the formation of the
new expansion vectors. In the Lanczos subspace method,” these
are defined from the gradient 0p/dc, or equivalently the residual
vector r,

xew = L g e = (30)
2 dc
where the normalization c-c = 1 of the current approximate
vector c is assumed for notational brevity. The Lanczos method
has several desirable features which follow from the facts that the
resulting subspace matrix H is tridiagonal and that (in exact
arithmetic) the subspace overlap matrix § is diagonal. However,
in practice this expansion vector choice exhibits slow conver-
gence, and due to roundoff errors the diagonal nature of S cannot
be assumed to be maintained. The slow convergence is a
particular problem in CI calculations because each iteration
requires the expensive computation of a new w = Hx vector.
To overcome these problems, Davidson®® proposed instead

the expression
X = (H® — p1) " 'r (31)

where HY is chosen as some easily invertible matrix. In practice,
H is taken typically to be either the diagonal elements of H or
some easily computed approximation to these diagonal elements.
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Expressions involving orbital energies (see ref 45 for an example
of a typical implementation) or averaged expressions involving
the hyp, gpqq and gyqpq integrals (see refs 4, 46, and 47 for further
discussions) are common choices. This eliminates the need to
store and retrieve the H® elements during the optimization
procedure. With determinantal expansions, artificial spin-con-
tamination issues may be avoided either by choosing an H’ for
which [H%S?] = 0 or by invoking a subsquent explicit spin-
projection step (e.g, see refs 4 and 46-48 for further discussion).
The expression in eq 31 may be derived either from perturbation
theory or from relaxation arguments, and the matrix (H° —
p1) " may be regarded as a preconditioner of the gradient.

Because the expansion vectors are created in an iterative
process, it is not necessary to store the exact elements, for
example, from eq 31. Any small error introduced in one expan-
sion vector can be compensated for in subsequent expansion
vectors. Lossy data compression may be applied to the vectors in
order to reduce storage requirements, reduce I/O bandwidth, or
to reduce communication volume in a parallel environment, and
if the differences that are introduced into the individual vectors
are controlled, they do not affect the overall convergence rate.
Perturbation theory estimates, combined with rigorous error
bounds, are typically used in the formal analysis and in the data
compression process.” > Typically these techniques involve
deleting small expansion vector elements entirely, approximating
floating point values with reduced precision, and approximating
blocks of elements using linear algebra approaches (e.g., incom-
plete Cholesky factorizations™ >° or truncated singular value
decomposition).

Equation 31 is almost certainly the most popular expression
used in iterative Davidson procedures. In practice it is usually
reliable, provided some care is taken to account for small
denominators in the preconditioner. These can arise in
situations where a diagonal element happens to be close to the
current Ritz value, particularly in excited-state calculations.
Equation 31 does achieve the goal of improving the convergence
rate over the Lanczos method. Typically for CI calculations,
about 10—20 iterations are required to achieve convergence for
each converged eigenpair. However, in contrast to the Lanczos
method, the subspace matrix H is generally dense, without an
explicit orthogonalization step the overlap matrix S is no longer
diagonal, and all of the subspace vectors X and their matrix—vec-
tor products W need to be stored. Nonetheless, the Davidson
method with diagonal preconditioners is without a doubt among
the most popular and reliable approaches used within modern CI
calculations.

In certain situations, however, convergence of the Davidson
procedure with a diagonal preconditioner can be slow, requiring
hundreds of iterations, and regardless of the convergence rate,
the individual iterations with large CI expansions are expensive.
This leads to the exploration for improved preconditioners in
eq 31 that converge to sufficient accuracy with fewer expensive
matrix—vector products. Olsen et al.*® pointed out that in the
limit H*—H in eq 31, then x"*"—c, the current approximate
vector, and the iterative procedure makes no progress toward
convergence. They replace eq 31 with the modified equation

X = (B0 — p1) " (r + e0) (32)
with the orthogonality constraint x"*"+c = 0. The iterative
subspace method based on this correction vector is called the
inverse-iteration generalized Davidson (IIGD) method.>® In the
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limit H*—H in eq 32, the correction vector corresponds to a
Rayleigh quotient inverse iteration, which not only converges but
also converges cubically™ (i.e., the error in a particular iteration is
the cube of the error of the previous iteration). This observation
has little practical value (because iterating the linear equation
solution of eq 32 with the exact H is just as expensive as iterating
the eigenvalue equation), but it does show that the formulation is
at least consistent in this formal limit. Sleijpen et al.>”*® and van
Dam et al.>” arrive at a similar correction vector definition in their
generalized Jacobi—Davidson (GJD) approach through approx-
imation of the Rayleigh quotient inverse iteration equations.
They also propose several ways to compute x"“" with one-step
rather than two-step procedures.

Finally, Shepard et al.®® proposed the subspace projected
approximate matrix (SPAM) method. This method employs a
sequence of one or more approximations to the H matrix
(denoted H, H®, and so forth). These approximations are
combined with projection operators defined with the current
expansion vectors, P = XX" and Q = (1 — P), to arrive at a
recursive procedure that may be implemented as a modification
of the Davidson subspace method. Some of the features of this
approach are that the effective preconditioner improves each
iteration because of the changing projection operators, the
correction vector x* " is orthogonal not only to the current
approximate eigenvector " but to the entire subspace X, and the
approximate matrices need not be easily invertible. In the formal
limit H—H, the SPAM approach would, in principle, converge
in a single iteration, showing that the procedure is formally
consistent. The usefulness of the SPAM approach rests on the
difference in the computational effort in computing matrix—
vector products with the approximate matrices compared to the
effort for exact matrix—vector products. These approximations
may consist of the neglect of off-diagonal blocks of the exact
matrix (e.g., the By approximationl) , approximations to the two-
electron repulsion integrals (e.g, incomplete Cholesky
factorizations,> > Rl approximations,®’ or the neglect of classes
of multicenter integrals in an AO-direct implementation), den-
sity-screening methods (in either the MO or the AO basis), or
representations using reduced precision arithmetic (e.g, to
exploit 32-bit floating point GPU hardware).

The expansion vectors X and the corresponding matrix—
vector products W are required in several steps of the Davidson
subspace method, including the computation of the subspace
matrices H=W"X and § = XX, the computation of the residual
vectors ¥ = (W&* — kaEk) and the corresponding residual
norms |rk| , the orthonormalization of the expansion vectors, and
contractions of the subspace in the form X™*"~—X°“T and
W —W°T, Blocked algorithms that are designed to minimize
I/0 to external storage or to minimize communications require-
ments in parallel implementations may be used for these steps.®>
Compared to the unblocked algorithms, the overhead can be
reduced from O(m?) to only O(m) with this approach. These
efficient blocked algorithms are particularly important for larger
subspace dimensions associated with, for example, multiple-state
calculations. Reference 62 contains a general discussion of these
blocked algorithms along with several other features of Davidson
implementations that are useful for large CI expansions.

Because each iteration of the diagonalization procedure is so
expensive, convergence is seldom continued until full machine
precision is achieved. Instead, the iterative process is typically
terminated when the eigenvalues are converged to about 10 “to
10™® E;,. The convergence is typically monitored in several ways,
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including the changes in the Ritz values and/or vectors in each
iteration along with estimates of the predicted energy change for
the next iteration (e.g,, Ap* A~ r*+x**¥). In addition, there are also
rigorous bounds that apply to the elgenvalue problem.>® The
most useful include the residual norm bound |r | = |Ex— pk| the
gap bound |r |*/71 = |Ex — pi/, and the spread bound |¢'|*/0 =<
|E1 — p1|- The gap 7 is the difference | p;. — Ey/| between the Ritz
value p;. and the nearest exact eigenvalue Eys for k' # k, and the
spread o is the spectral range of the matrix, Exam — E;. The first
two bounds apply to both interior and exterior eigenpairs, while
the last bound results in an upper bound to the lowest exterior
eigenvalue (e.g., the ground state) in CI calculations. A detailed
discussion of the practical use of these bounds is given by Zhou
et al.**** The gap bound is one of several expressions that shows
that the error in the eigenvalue is second-order in the error in the
wave function.”** Although these rigorous bounds are indeed
useful in CI calculations, it has proven difficult to extend them to
other types of electronic structure methods.

2.1.3. Size-Consistency Corrections to CISD. As pre-
viously discussed, the most serious formal deficiency of MRCI
is the lack of size-consistency; i.e., the energy of the system does
not scale properly with the system size. This shortcoming of
CI led to the development of many-body methods (see, e.g,,
ref 26 and references therein), in particular different perturbation
theory ansaetze and coupled cluster methods (for reviews see,
e.g., refs 65—70), but several correction schemes to the CI energy
and wave function have been suggested over the years as well.
It is advantageous to group these latter into two categories:
one includes a posteriori correction of the energy, the second
includes corrections to the CI equations.

2.1.3.1. A Posteriori or Davidson Corrections. The first a
posteriori correction of the CI energy was suggested as early as
1962 along with molecular applications by Sinanoglu:”*

£ij
Esc= Y& Y () (33)

i>j  k>lLa>b

where ¢;; is the pair energy defined in eqs 18 and 19. The second
summatlon is restricted to k, I indices not coinciding with i
and/or j, ensuring proper treatment of the EPV terms. The above
form is not expensive to evaluate; therefore, it is rather surprising
that it has not been used more widely by the theoretical chemistry
community. Instead, the popular formulas all represent the
average of the above expression where pairs are not distin-
guished, and thus they can be written in terms of the correlation
energy (AE) instead of the pair energies. The first such correc-
tion has been suggested by Davidson in a book chapter’” (see
also ref 73), and therefore these are often referred to as Davidson
corrections.

Several versions of this correction are used in the hterature
The simplest one is the orlglnal suggestion by Davidson’* and by
Langhoff and Davidson” (cf. eq 27)

Epc = (1 —c?)AE (34)

i.e., the correction is proportional to the correlation energy and to
the square norm of the correlation part of the wave function (see
also ref 74). Note that this formula can be obtained from Egc by
replacing the second, restricted summation by an unrestricted one

761"].
al ab\2
Y @y Y (@) (35)
k>La>b k>lLa>b
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This simply means that the EPV terms that should be excluded from
the correction have been included. Pro oper normalization of the
correction has been suggested by Luken”

I*C()

Erpc = AE (36)

o

Luken’s derivation closely follows Sinanoglu’s analysis7l, which
leads to Egc (see above). This form of the correction is often
referred to as the renormalized Davidson correction (RDC). By
applying size-consistency corrections to the coeflicients as well,
and by using these to calculate the energy correction, a slightly
dlﬁerent formula was derlved independently by Davidson and
Silver’® and by Siegbahn.””

(1-a’)

Epss = 1 AE (37)
Despite the different forms, all of these formulas use the
CEPA(0) approximation; i.e, EPV terms™ are incorrectly
included in the energy ex Bressions. By comparing the CC and
CI methods, Paldus et al.”” give an excellent theoretical back-
ground of these approximations. They clearly state that these
formulas will overestimate the effect of higher excitations, and
in this respect Erpc should be preferred over Epc.

The next step taken to improve the correction was the correct
treatment of EPV terms. Interestingly, however, the work of
Sinanoglu”' mentioned previously was not used as the starting
point in this effort. Instead, averaged forms with the correlation
energy replacing the pair energies were considered. The first
useful approximation was given by Pople et al.”’

/N? + 2N tan?(26) —

2(sec(20) — 1) (38)

Epc =

with cos(6) = co, where N is the number of correlated electrons.
To show that this formula accounts for EPV terms, Meissner™"
has rewritten it into the following simpler form (assuming ¢, ~ 1)

2\ 1 — ¢y?
Epe = <1_N) —AE (39)

€0

This formula gan also be derived using an averaged CEPA
approximation®' by considering noninteracting, equivalent, elec-
tron pairs. The resulting correction vanishes for two electrons,
N = 2, which is formally correct since CISD is exact for two-
electron wave functions, and there are no imposed excitation-
level limitations on the wave function expansion. Note that the
form E'pc had been used in multireference applications (see, e.g,,
ref 82) prior to either ref 80 or ref 81.

A more rigorous consideration of a helium-like noninteracting
system led Duch and Diercksen®” to the following formula

1—602

2N - D/(N-2))e” — 1

which is a slightly modified version of the Davidson—Silver—
Siegbahn (Epss) correction.”®””

Further improvement can be introduced by considering
different CEPA arguments and including electron pair interac-
tion in an averaged manner. Meissner™° suggested the use of the
formula

. ((NN—(Z)(N—3)>(1 — ¢ )AE (41)

N — 1) C()2

AE (40)

Eppc =
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Upon comparison with the second form of the Pople correction
in eq 39 to this expression, the above formula yields a smaller
correction due to the different leading factors and therefore
compensates for the well-known overestimation of most Davidson
correction schemes. Furthermore, Eyc vanishes for three-electron
wave functions. As pointed out by Meissner,* this is consistent
with the fact that there are no contributions from quadruply
excited configurations in a three-electron system.

Duch and Diercksen®’ carefully compared the above-men-
tioned formulas and concluded that the Duch—Diercksen and
Pople corrections clearly outperform the original Davidson
correction and its renormalized variants. Shortly thereafter,
Meissner®* suggested a new correction which may be regarded
as an approximation of the coupled-cluster (CC) energy using
the CI coefficients. The calculation of this correction is com-
putationally more demanding than the usual Davidson-type
corrections since, in addition to the coefficients, some additional
Hamiltonian-matrix elements are needed as well.** These matrix
elements are not readily available in direct-CI programs, which
explains why this correction, despite its accuracy, has not been
widely implemented or used in applications.

For the sake of completeness, note that a size-consistency
correction for the CIS method has been suggested by Zalesny
et al.®

As previously noted, Davidson-type corrections are largely
obsolete for single-reference CI; coupled-cluster methods can,
and arguably should, be used instead. In contrast to single-
reference approaches, the generalization of the above formulas
for the MR case is, however, of significant interest since no MR-
CC method yet satisfies all theoretical and practical
requirements.?6~ 55140179181

The first applications of Davidson-type correction for the
multireference case were due to Peyerimhoff and co-workers
(see, e.g., refs 89—91) who used the Davidson correction Epc to
correct the MR-CISD energy with

Egpp = (1— Y, sz)(EMR-CISD —Eo) (42)
peP

A more precise description of this formula is given in a book
chapter by Buenker et al.”> According to this definition, ¢y are the
coefficients in the reference space (P) and E, is the reference
energy. Prime et al.”® derived the renormalized (Egpc) form of
the correction using quasidegenerate perturbation theory argu-
ments, while Simons”* reached the same conclusion by compar-
ing the MRCI and MR-CC wave functions. In later applications,
Burton et al.*>*>?® used this along with the simplified form of the
Pople correction (E'pc) in multireference situations. It has been
concluded (see in particular ref 96) that the latter Ep correction
gives more accurate results due to a lesser extent of overestima-
tion. Note that in all these applications by the group Peyerimhoff
et al®**%*% the correction formulas were directed toward
extrapolation of the truncated CI energy to the full-CI limit
rather than to correct specifically for size-extensivity effects. The
Egpp formula was later used by Bauschlicher,”” Schwenke and
Truhlar,”® and Ackermann and Hogreve.99 Shavitt et al.'® give a
nice overview of all these efforts and compare the different
corrections. Jankowski et al.'”" presented a generalization of
Siegbahn’s derivation”” of Epgg for the quasidegenerate case. The
multireference version of the Meissner correction (Eyc) was
already proposed in the original publication,*® and it has been
pointed out that it outperforms other variants.

The multireference correction formulas can be obtained from
the single-reference ones by replacing ¢y and the reference energy
by their multireference counterparts. Prime et al.”> used quasi-
degenerate perturbation theory arguments to derive the renor-
malized form of the correction (Expc) by employing

o= Y ¢ (43)

peEP

where ¢, are the coefficients of the reference functions in the
MRCI wave functions. Meissner gives a somewhat simpler
justification for the use of eq 43 in the appendix of ref 80.
Blomberg and Siegbahn'® start their derivation with the “logical
choice” by defining ¢y as the overlap between the reference and
final wave functions, which leads to

o = (refla)’ = (Y clgo)cp)2 (44)
peP
where %) are the coefficients of the reference functions in the

P
normalized zero-order (MCSCF) wave function. They found

that this choice results in corrections that are too large, in
particular near transition states where the ordering of states in
the reference and final spaces may differ. Therefore, they replace
cl(,o) in eq 44 by the normalized coeflicients of the reference
functions in the final MRCI expansion, which results in eq 43
again. There are several other arguments for the use of eq 44:
Simons’* derives eq 44 by comparing the MRCI and MR-CC
wave functions; Van Lenthe and co-workers'*>'** use eq 44,
citing a private communication by Ahlrichs; Shepard®' (in
particular see page 417 of ref 21) discusses the same choices in
the context of analytic energy derivatives; recently, Werner
et al.'® also give this formula explicitly and state that their earlier
applications used this expression without specifying it. Addition-
ally, they also suggest a third variant'®® of ¢, which, similarly to
Blomberg and Siegbahn,'®* uses the overlap of the rotated
reference function and the final wave function in a formula
resembling eq 44. The rotated reference functions are those
functions which have the largest overlap with the final MRCI
states. This latter choice is preferable in the vicinity of conical
intersections and avoided crossings where the reference space
part of the wave function changes rapidly and the ordering of the
reference and final energies are not the same, but it should give
similar results otherwise.

In a recent review Khait et al."® present numerical compar-
isons of eqs 43 and 44 and find that eq 43 gives slightly better
results. (Note that Khait et al." refer to eq 44 as the “original
formula” and to eq 43, which probably has been used more often,
as “modified”, which mi§ht cause some confusion.) To the
contrary, Werner et al.'” found that eq 44 gives somewhat
better results for the barrier heights of the F + H, reaction,
although they also suspect some error-compensation or error-
cancellation effects. Considering all this information, it appears
that, both theoretically (see ref 80) and numerically (see ref 106),
the choice eq 43 is preferred, although in practice the difference
does not seem to be critical.

In addition to ¢, there are also several possibilities in the
choice of Eq. Early papers®®?"'%*'%* 4l used the energy corre-
sponding to the reference space (usually the MCSCF energy);
even the latest investigation by Khait et al.'*® uses the same
choice. The use of the expectation value of the Hamiltonian in
the reference space using the MRCI instead of the MCSCF
coeflicients has been discussed in ref 21. This choice has received
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little attention in the literature until recently when Szalay'®” used
this in a MR-AQCC variant (discussed below) to address some
discontinuity issues.

A more involved correction using MR perturbation theory,
introduced by Duch and Diercksen,*” results in a much smaller size-
consistency error than direct application of the single-reference
corrections to the multireference case. Meissner and co-workers
constructed a multireference correction by calculating higher
excitation coefficients approximately.'®®"'” Their method can
be viewed as the noniterative version of the RMR-CCSD
(reduced multireference) method of Li and Paldus."*"*'> Only a
limited number of tests are available for this method (see,
e.g,, Meissner et al.'"*), and unfortunately no comparsions are
published with the usual methods. Other multireference meth-
ods have also served as a starting point for Davidson-type
corrections. Meller et al.'"* used their MR-(SC)*-MRCI method
(see below) in the derivation. Hubaé et al.™*>''® obtained a
correction by Brillouin—Wigner perturbation theory''” which
was found to outperform both the Epc and Expc corrections.
Further details on the theoretical comparison of the a priori
corrections can be found in refs 31, 84, and 106.

In light of the above discussion, it is worth reviewing which form
of the Davidson corrections are used by different popular program
systems. COLUMBUS""*"'"? uses eq 43 along with E, being the
MCSCEF energy and calculates the multireference versions of
Epc, Erpe, Esps, and E'pe. The correction in MOLPRO' is
restricted to Expc but offers all three choices for ¢, and two
possibilities for E, (MCSCF energy, or the expectation value
with the rotated functions). GAMESS'*"'** also calculates Expc
using eq 43. MOLCAS'* uses the renormalized Davidson
correction (Egpc) and a slightly modifed form of the modified
Pople correction (E'pc) called there the “ACPF correction”.

A full numerical evaluation of the different corrections is out of
the scope of this review. To give the reader an overview of the
performace of different methods, in Table 1 the results of
calculations on the symmetric dissociation of water are compiled.
The most important observations are that all corrections sig-
nificantly improve upon MRCI, and corrections using the
CEPA(0) approximation (Epc, Erpc, Epss) overshoot by giving
energies well below the exact (full-CI) limit. The best NPE
(nonparallelity error) can be found for the Pople (Epc) and
Meissner corrections (Eyc). For a more detailed analysis see refs
31, 80, and 83.

From the survey of the literature it seems that the majority of
applications use either the original (Epc) or the renormalized
(Erpc) correction. From the already mentioned analyses by
Meissner,*® Duch and Diercksen,®® and recently by Szalay," it is
clear however that either the Meissner correction (Epc)® or the
Pople correction (Epc)”” are preferable due their simplicity and
to the correct treatment of EPV terms. Consequently, these are
the recommended correction expressions.

Note that MR-CISD calculations with a Davidson-type correc-
tion are often labeled as MR-CISD+Q, indicating that some
quadruple excitation contributions have been included. Although
this is a convenient shorthand, the problem with this notation is
that the exact correction expression often is not specified, and
consquently insufficient information is availabe to reproduce the
results. In most cases it is the original Davidson correction (Epc)
which is used, but not always, and caution must be taken when
using these results.

Brown and Truhlar'*® recognized that the external correlation
energy of an MR-CISD wave function relative to an MCSCF
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Table 1. Performance” of Various Multireference Methods
for H,O

distance”

method 1R, 15R. 2R, 25R. 3R, AE® NPEY
MR-CISD'®° 496 472 372 314 301 391 195
+ Epc —121 —1.14 —0.70 —0.60 —0.58 —0.85 0.63

+ Erpe —147 —1.37 —0.86 —0.73 —0.68 —1.02 0.79

+ Epss —1.73 —1.63 —1.02 —0.84 —0.80 —1.20 0.93
+Epc (N=8) 005 006 022 021 021 015 0.17

+ Epc (N =10) —0.31 —0.28 —0.04 —0.01 0.01 —0.13 0.32
+Epc(N=38) 0.14 016 028 023 023 021 0.14

+ E'pe(N = 10) —0.17 —0.15 005 0.05 0.06 —0.03 023

+ Epyc(N = 8) 151 144 126 106 102 126 049

+ Epc(N = 10) 096 093 086 073 070 084 026
MR-CEPA(0)'*° —1.80 —2.00 —2.37 —0.92 —0.82 —1.58 1.55
MRCEPA'® —0.79 —0.57 —0.54 —0.62 —0.64 —0.63 0.25
MR-ACPE(N = 8)'%° 0.05 007 024 021 020 015 0.19
MR-ACPF (N=10) —029 —026 —0.01 —0.02 —0.01 —0.12 0.28
MR-ACPF-mc'®° 022 043 034 020 018 027 025
MR-ACPF-2 (N=8)'* 071 082 071 053 047 065 035
MR-AQCC(N =8)" 152 147 128 107 103 127 049
MR-AQCC (N = 10) 092 091 087 072 070 082 022
MR-AQCC-mc'®° 156 169 145 123 118 142 051
MR-(SC)*C1'** 211 209 183 177 183 193 034
CD-MRCISD'”’ 1.03 091 080 071 064 082 039

“ Table entries are the errors AE in mE;, with respect to the all-electron
full CI of Olsen et al.'** with the cc-pVDZ basis. A 4* CASSCF reference
was used for all calculations. For some corrections, the indicated number
of electrons was used in the correction formula. ” Symmetric dissociation
relative to Re(om) = 1.84345 bohr, ZHOH = 110.6°. “Mean error.
dNonpara]leIity error (NPE = max(AE) — min(AE)).

reference (E® — E,) is approximately a constant fraction of the
exact external correlation energy. They proposed the scaled
external correlation (SEC) energy

Eci _ EO
F

E* = Ey + (45)
as a semiemprical correction to the MR-CISD energy. The
parameter F is taken to be a constant over the entire PES, and
its value is adjusted to fit known bond dissociation energies,
barrier heights, excitation energies, or other experimental data.
This expression has the same form as the Davidson-correction
expressions discussed in this section. For example, eq 34 may
used to write the corrected energy as

E°% = Ey 4 (2 — ¢?)(EY — Ep) (46)
and similar expressions apply to the other correction expressions.
The calculation of analytic energy gradients for the nonvaria-
tional Davidson-corrected energy expressions is complicated by
the need to compute the ¢o” derivatives (i.e., from the CI wave
function response equation). As discussed in section 2.5, this is
unnecessary for the variational MCSCF and MRCI energy
gradients. However, due to the assumption that F is independent
of geometry, the SEC energy gradient can be computed directly
from the underlying MCSCF and MRCI energy gradients, or
alternatively from the appropriately weighted reduced density
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matrices, providing an efficient algorithm for the SEC energy
gradient.

2.1.3.2. CEPA-Type Multireference Methods. In this section
those methods which include the extensivity correction in the
equations rather than as an energy correction are summarized. In
these methods the expansion coefficients are corrected along
with the energy. A feature of these methods is that even though
the expansion coefficients are avialable, the actual corresponding
wave function often cannot be defined in a straightforward
manner. In this sense these all follow the CEPA (coupled
electron pair approximation) scheme. The original CEPA idea
originated from Kelly'*”'*® in the 1960s and was revived'>*~ >
in the 1970s after coupled-cluster theory (originally called CP-
MET, coupled pair many electron theory'*®) provided a solid
theoretical foundation. The development of CEPA methods has
been largely motivated by the need for accurate, large-scale
calculations, logically building upon CI technology. These meth-
ods include the variational versions CEPA-var by Pulay'®” and
the CPF (coupled pair functional) method by Ahlrichs et al.,'*®
which are of particular importance. Single-reference CEPA
methods appear to be obsolete with the development of
coupled-cluster methods,**®® since the latter are theoretically
more rigorous yet computationally comparable in effort, although
this view has been challenged recently."** However, in the multi-
reference domain, CEPA-type methods have never lost impor-
tance due to the lack of widely accepted MR variant of CC theory
despite recent effort (see, e.g., refs 86—88,140, and 178—180).
This section focuses on the MR variants of the CEPA-type
methods—for details of the single-reference CEPA methods, the
interested reader is referred to the excellent review by Koch and
Kutzelnigg.'*'

Surprisingly a large number of different variants of multi-
reference CEPA-type methods has been proposed and used in
the literature. Readers of the resulting papers, and the potential
users of these methods, have a hard time choosing the best method
to use in chemical applications. The methods are closely related,
although the connections might not be obvious by just reading
the derivations in the respective papers. These relations remain
hidden, often even from the authors (and perhaps for reviewers);
for this reason, some of the methods are completely equivalent,
appearing under different names and from different derivations.
A more formal comparison of all these methods can be found
elsewhere.*""*>'* The present review discusses these methods
briefly in chronological order. The comparisons will concentrate
on the following important properties of the methods: (i) treatment
of EPV effects, (ii) redundancy contributions in the equations,
(iii) whether the calculation of the energy gradient is possible via
an energy functional, and (iv) applicability to excited states.

Although the motivation for introducing these methods was to
account for the size-consistency error of MR-CISD, most of the
methods given here are not size-consistent in the general sense.
Some of them fulfill other important theoretical requirements
instead, such as the proper description of the limiting case of
noninteracting pairs or the proper behavior for certain numbers
of electrons. Although not rigorously size-consistent, all the
methods seek the goal that any remaining error is small and
does not bias the application to molecular systems (see, e.g,, refs
142 and 143).

Perhaps the first suggestion for a CEPA-type approach in the
multireference domain is from Prime et al.”® who made use of the
cancellation of quadruple excitation contributions to quaside-
generate perturbation theory. By accounting also for the EPV
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terms, they developed a multireference version of the linearized
CP-MET."*® No numerical applications were given in ref 93, and
no implementation results have been reported since.

The first practical multireference variant was proposed by
Bartlett and co-workers'**'* in the form of their multireference
linearized coupled-cluster method (MR-LCCM). The derivation
is based on linearization of the MR-CC equations as proposed by
Paldus;'* i.e., the method uses the CEPA(0) approximation. To
avoid problems arising from the noncommutative nature of the
excitation operators, the orthogonal complement of the refer-
ence space was excluded from the MR-LCCM wave function. On
the basis of this feature, the authors of ref 144 point out the
improved convergence behavior of the resulting equations.
Possible inclusion of the orthogonal complement in the MR-
LCCM method was considered in ref 143,

Three new variants then appeared in 1988 —1989: the method
called MR-CEPA(0) by Gdanitz and Ahlrichs®" was a byproduct
of MR-ACPF, the unitary CEPA (UCEPA) of Hoffmann and
Simons'*” was based on their multireference unitary CC
ansatz,"** and the variational perturbation theory (VPT) method
of Cave and Davidson'** used perturbation theory arguments. In
all three, the basic assumption is the CEPA(0) approximation,
and redundancy is not considered. It was determined (see, e.g,
ref 142) that these methods are indeed completely equivalent,
and they differ from the MR-LCCM method in that they include
the orthogonal complement of the reference space in the wave
function. This difference does not really affect performance in
most cases, but they are clearly preferable for situations where the
reference wave function changes rapidly (e.g., avoided crossings,
cusps, and crossing seams). The analytic gradient can easily be
defined for all these methods,"** and the calculation of excited
states is possible via the diagonal shift formulation, but this
option was not considered in the original papers (except for MR-
CEPA(0) which is a special case of MR-ACPF*"). In the
following discussion, these three methods are all denoted MR-
CEPA(0).

To address the convergence issue in cases of quasidegeneracy
in the reference space, particularly when exclusion of the
orthogonal complement is not acceptable, Cave and Davidson'>°
proposed a variant called the quasidegenerate variational pertur-
bation theory (QDVPT) method, which was based on an
effective Hamiltonian. It has been shown'* that it also uses
the CEPA(0) approximation, and it is not expected to give
substantially different results than MR-CEPA(0) (or VPT)
except in the targeted quasidegenerate situations. Numerical
results also support these expectations.'>* Note, however, that
the CEPA(0) approximation is not valid if quasidegeneracy is
present in the reference space, and therefore the use of either
variant is not fully justified. Another drawback of the QDVPT
method is that the analytic gradient cannot be easily formulated
due to the lack of an energy functional. By construction, QDVPT
can be applied to excited states.

An important development was proposed by Gdanitz and
Ahlrichs®' in the same year. On the basis of the CPF method,"**
they proposed an averaged formula in their multireference
averaged coupled pair functional (MR-ACPF) method to ac-
count for EPV terms for the first time. Furthermore, the
formulation was pioneering since the equations were formulated
as the derivative of an energy functional, allowing immediate
recognition of its relation to CI methods and providing a path for
the calculation of analytic gradients similar to MRCI. The
approximation used for the EPV terms appeared to be equivalent
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to the modified form of Pople correction” eq 39 and can be
explained by dividing the system into noninteracting electron
pairs. Although the method is not strictly size-consistent, this
formulation ensures that (i) the method is exact for noninteract-
ing electron pairs and (ii) it is size-consistent for identical
subsystems using a single function in the reference space. This
method is among the most popular variants, and it has been
implemented within several popular program packages.

Departing briefly from the chronological discussion, note that
avariant of QDVPT (which is a MR-CEPA(0) method) using an
ACPEFE-style correction for the EPV terms was subsequently
proposed by Murray et al."*" under the name QDVPT-APC
(QDVPT with averaged pair correction). Since quasidegeneracy
in the reference space is much less of a problem for MR-ACPF
than for MR-CEPA(0), this method offers no apparent advan-
tages over MR-ACPF. On the contrary, the formulation of energy
derivatives is hindered by the lack of an energy functional. This
method has been only rarely applied in chemical applications.

Another way to improve the MR-CEPA(0) method is to
consider redundancy effects. The redundancy problem can easily
be understood by realizing that configurations (or determinants)
in the higher excitation space may be reached from more than
one reference function. In contrast to the single-reference case,
this means that correction for some higher excitations will be
counted more than once. This redundancy must be considered in
order to avoid overestimation of the correction. The first sug-
gestion came from Ruttink et al.'"®® under the name MRCEPA,
who defined excitation classes which were characterized by
the holes in the inactive orbitals and by particles on the virtual
ones. These classes were considered separately when calculat-
ing the size-consistency correction. On the other hand, the
EPV effects were neglected in MRCEPA; thus it remains a
CEPA(0)-type method. The coefficients of the reference func-
tions are relaxed in this procedure; i.e., the orthogonal compo-
nent of the reference function was considered. An analytic
gradient expression is not available for this method, but excited
states can be described.

A more rigorous adaptation of the single-reference CEPA(n)
series to the multireference problem was presented by Fulde and
Stoll'*? in 1992. These methods were designated by the acronym
MR-CEPA-n, with n = 0, 1, 2. In all variants the reference
function is a prior MCSCF function that is not relaxed subse-
quently. The first version MR-CEPA-0 is equivalent to MR-
LCCM as acknowledged by Fulde and Stoll."** MR-CEPA-1 and
MR-CEPA-2 correspond to the single-reference CEPA(1) and
CEPA(2), respectively. Redundancy effects are also considered,
but only through the energy expression rather than the wave
function equations. Fulde and Stoll'>* do not prove size-
consistency explicitly, but they argue that the derivation through
cumulants assures this property. Implementation into CI pro-
grams would be easy in a diagonal shift form, and no substantial
additional computational effort compared to CI would be
needed. There is no report on the implementation of any
variants. Calculation of the analytic gradient would, however,
be difficult since a functional of the energy cannot be associated
with the equations. Furthermore, the method lacks invariance
with respect to transformation of occupied orbitals, as do the
single-reference counterparts. Treatment of excited states mi§ht
be difficult and was not discussed in the original publication.">*

In 1993, the method known as MC-CEPA (multiconfigura-
tional reference CEPA) was introduced by Fink and Staemmler.'**
The equations defining the method reduce to Kelly’s CEPA
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formula'>”"*® in the single-reference case. Nonorthogonality of

functions produced by products of operators are considered by
the norms. Redundancies are not considered within this approx-
imation. Implementation in the form of diagonal shift is easy; the
additional computational effort is due to the calculation of the
norms. Since no averaging of the pair energies is invoked, the
method might be superior to MR-ACPF in situations in which
the averaged pair approximation is not appropriate. No func-
tional can be defined for the method, so an analytic gradient
formulation is challenging. MC-CEPA has been implemented
within the internally contracted framework (see section 2.1.5.1)
and uses the PNO approximation'>'® which allow applications
for rather large molecular systems (see section 3.1).

Starting in 1989, another series of methods were developed by
Tanaka and co-workers'>*~"*” under the name multireference
coupled pair approximation (MRCPA). These methods use an
effective Hamiltonian formalism similar to the QDVPT method.
There are two levels of approximations: (i) MRCPA(2) (formerly
known as MRCPA(0) **'%%) uses a CEPA(0) basis, and, as such,
it is equivalent to QDVPT "’ i) MRCPA(4)"*® (which is a sli%ht
modification of the variant formerly known as MRCPA(2)'3*'>)
and considers redundancies, but the EPV terms are not handled
(see eq 68 in ref 157). The method simplifies to a CEPA(0) in the
limit of a single-reference function, and therefore it is no surprise
that MRCPA(4) overestimates the effect of higher excitations
considerably (for more details see the comparisons in ref 31).
The method is size-consistent for noninteracting electron
pairs,"> it can be applied to excited states, but analytic gradient
calculations are not available.

Despite the successes of the MR-ACPF method, it was found
to overestimate the effect of the higher excitations."*® This led
Szalay and Bartlett'*® in 1993 to suggest a modified version of the
method; the multireference averaged quadratic CC (MR-
AQCC) method"**'*® should be viewed as the CEPA version
of the Meissner correction®” just as MR-ACPF is related to the
Pople correction. The functional form that was used can be
justified by distributing the correlation energy among all possible
electron pairs. This is in contrast to MR-ACPF where the
correlation energy is distributed among the noninteracting
electron pairs. Note that MR-AQCC retains all the attractive
features of MR-ACPF, including an energy functional, which
leads to an analytic energy derivative formulation,®" and applic-
ability to excited states. To enable the calculation of transition
moments, a linear response version of the method (MR-AQCC-
LRT) is available."> This means simply that the correction uses
the ground-state instead of the excited-state correlation energy.
There were some attempts to also include redundancy effects in
the MR-AQCC-mc variant,"®® where the correction is done in
the spirit of the MRCEPA method.'® Note that ref 160 also
suggests a procedure to include redundancy effects in MR-ACPF.
In test calculations and in application to Be,, Fusti-Molnar and
Szalay'**'®" found that these methods performed excellently.
MR-AQCC-mc received little attention (see however CD-
MRCISD in subsequent text), most probably due to complicated
structure of the method and to the lack of analytical gradients. A
recent version of the MR-AQCC method by Szalay'®” solves
some discontinuity issues by using a modified reference energy.

In 2001 Gdanitz'®* suggested a modified version of the MR-
ACPF method, called MR-ACPE-2, which is essentially a com-
bination of the original MR-ACPF and the MR-AQCC parame-
trization. While for the double excitation space the original
MR-ACPF parametrizations®" were used, the limiting value of
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Table 2. Properties and Implementation of Different Multireference CEPA-Type Methods

compensation handling of

method for EPV terms redundancy
MR-LCCM"#+1% no (CEPA(0)) no
MR-CEPA(0)%"147149 no (CEPA(0)) no
QDVPT" no (CEPA(0)) no
MRCEPA'® no (CEPA(0)) averaged
MRCPA(4)'¢ no (CEPA(0)) yes
SS-MRCEPA(0)'® no (CEPA(0)) yes
MC-CEPA'®? Kelly's CEPA no
MR-ACPF*! averaged CEPA(2) no
QDVPT-APC™! averaged CEPA(2) no
MR-AQCC'**!58 averaged CEPA(1) no
MR-AQCC-mc'® averaged CEPA(1) averaged
MR-(SC)*-CI'®® exact CEPA exact
CD-MRSDCI'"” averaged CEPA(1) averaged
MR-CEPA1'7 CEPA(1) averaged
SS-MRCEPA(2)'®’ CEPA(2) exact
SS-MRCEPA(1)'%’ exact CEPA exact

availability
reference space of gradients implementation
unrelaxed yes COLUMBUS''®'"?
relaxed yes COLUMBUS"'®'*®
eff Hamiltonian no MELDE**?%
relaxed no GAMESS UK 21122182
eff Hamiltonian no local (ALCHEMY'®?)
eff Hamiltonian no MRCC'7*18*
unrelaxed no Bochum code'*¥'#571%7
relaxed yes COLUMBUS,'**'** MOLPRO"*®
relaxed no MELDF>%>283
relaxed yes COLUMBUS,""*'"" MOLPRO™°
relaxed no local'®® (COLUMBUS''®)
relaxed no local'®®
relaxed no local'””
relaxed no GAMESS UK
eff. Hamiltonian no local'®’
eff Hamiltonian no local'®’

the MR-AQCC parametrization'*® was applied for the single excita-
tion block of the Hamiltonian. In this way the notorious over-
estimation of higher excitations within MR-ACPF was addressed,
and results similar to MR-AQCC were achieved.'®

In 1994 Malrieu et al.'®® derived the method called multi-
reference size-consistent self-consistent CI (MR—(SC)Z—CI)
which is based on a single-reference variant'®* and can be viewed
as an exact CEPA. It accounts for both EPV and redundancy
terms exactly, and therefore it is rigorously size-consistent.'**
The method can be implemented in a diagonal shift (or dressing)
form as first suggested by Heully and Malriew.'®® Due to the
storage requirement of a vector of length n,.s times the number of
Q space functions, an extra cost that scales with the fourth power
of the number of orbitals,"'* the method is much more expensive
than other variants discussed previously. However, this addi-
tional cost is smaller than that of the underlying MRCI calcula-
tions. The importance of this method cannot be overstated—
since it is the most rigorous among CEPA-type methods, it is
often used as benchmark. It has been shown, however, that it is
not significantly more accurate than MR-AQCC or MR-ACPF
(see refs 142 and 166). Similarly, as in the single-reference case,
the exact CEPA is not significantly better than the approximate
variants.'*' Since no functional is associated with the MR-(SC)*-
CI method, no analytic gradient is available. There was an
attempt to construct a functional form under the name MR-
FCPF (multireference full coupled pair functional) by Meller
et al,"® but it was necessary to introduce a geometry-indepen-
dent diagonal shift which is formally problematic.

Most recently, Mukherjee and co-workers have proposed
another family of multireference CEPA methods'®’ termed SS-
MRCEPA (state-specific multireference CEPA). These methods
have been derived from the SS-MRCC approximation'®*~"">
(also known as Mk-MRCC) which is a realization of the Hilbert-
space-type multireferenc CC approach.'” As such, it is based on
an effective Hamiltonian, but state-specificity has been obtained
by explicitly including the reference space coeflicients into the
amplitude equations. For more detail, see ref 172. Four basic
versions have been suggested. SS-MRCEPA(0) uses a CEPA(0)
approximation (all terms are linearized)."**'”* SS-MRCEPA(2)
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uses approximations in the spirit of CEPA(2).'*” SS-MRCEPA-
(D) includes only the diagonal terms of the dressed operators'”*
and therefore is not orbital-invariant. Finally, SS-MRCEPA(I) is
an “exact CEPA” in the sense that it considers EPV terms
correctly.'” Redundancy is inherently considered in these approxi-
mations since this is an essential ingredient of the parent SS-MRCC
method.'”? Detailed comparison of these variants can be found
in ref 1785.

Recently, Ruttink et al.'”® and Ben Amor et al."”” revisited the
problem of accounting for both EPV and redundancy terms in
CEPA-type approaches. Their new methods are a reconsidera-
tion of Ruttink’s idea used in their MRCEPA method'®® and its
extension by Fusti-Molndr and Szalay in the MR-AQCC-mc
method."® Ruttink et al.'”® uses CEPA(1) arguments to extend
MR-CEPA, and therefore the method is called MR-CEPA1."7¢
The method of Ben Amor et al.'”” is called class-dressed (CD)
MR-CISD and uses CEPA corrections depending on the excita-
tion class. The new methods show some improvement over
MRCEPA and MR-AQCC-mc, but they also share their feature
that the analytic energy gradient cannot be formulated easily.

Table 2 summarizes the facts of this subsection by listing most
CEPA-type methods and their properties. The theoretically most
advanced methods are MR-(SC)*-CI by Malrieu et al.'*® and SS-
MRCEPA(I) by Mukherjee et al.'”" since these are exact CEPA
methods. In addition, MR-AQCC-mc,'*° MR-CEPA(2),'® MR-
CEPA1,'”® and CD-MR-CISD"'”” are methods which account for
both EPV and redundancy effects. Still, in actual calculations,
MR-AQCC'*"*® and MR-ACPF®' perform better, competing
with MRCC formulations'”®"*® unless higher excitations are
also considered in the latter."**'®" From a pragmatic point of
view, MR-AQCC and MR-ACPF have the advantages that
analytic gradients are available,''® that they can be readily used
to calculate properties, and that they can be applied to excited
states. CEPA methods should be preferred over the Davidson-
type correction since the correction is introduced in the equa-
tions. However, this property can introduce intruder-state pro-
blems, in particular if proper orbitals cannot be constructed.

Table 1 also includes the results of some CEPA-type methods
on the water example discussed previously with regard to the
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Davidson-type corrections. Again, CEPA(0)-type methods over-
estimate the correlation effect and result in energies that are too
low. Very similar NPE values can be observed for all other
methods. There are several detailed comparsions of these
methods in the literature, including refs 31, 142, 162, 176, 177,
179, and 180. Note that in the last two papers MR-AQCC and
MR-ACPF are also compared to various MR-CC methods.

2.1.4. Inclusion of Connected Triple, Quadruple, and
Higher Excitations. The size-consistency corrections discussed
above address primarily disconnected higher excitation effects,
those which are needed to restore size-consistency. Connected
higher excitation effects, on the other hand, represent “real”
higher excitations which appear also in coupled-cluster treat-
ments. This has the apparent consequence that these methods
cannot easily be classified as either CI or CC approaches. Since
this review focuses on MRCI methods, the present discussion is
limited to those which share some similarity to CI methods and
can therefore be implemented within CI codes.

Usmg the formalism of dressed Hamiltonians developed for the
(SC)*-CI method,"** Malrieu et al."**'® introduced hl%her excita-
tions into a single-reference CI treatment. Meissner' ™" used the
coupled-cluster equations to derive corrections for connected triple
excitations. Nooijen and Le Roy'*> also included some triple
corrections in the single-reference pXCISD approach along with
the size-consistency corrections (see above). Sherrill and Schaefer'”
included higher excitation effects by partitioning the (natural)
orbital space according to the importance of the orbitals. Sychrovsky
and Carsky'™* used the By approximation' in the triple and
quadruple excited space with respect to SR-CISD.

A very interesting novel approach to including higher excita-
tions has been developed by Bytautas and Ruedenberg'®®~'*®
who discovered that certain linear relationships exist between the
incremental correlation energy contributions arising from differ-
ent excitation levels when these increments, in turn, are con-
sidered as functions of increasing numbers of virtual natural
orbitals, added in order of importance (i.e., occupations). As a
result, the full correlation effects of quadruples, quintuples, and
sextuples, etc., can be obtained, using a limited number of
orbitals, by linear extrapolations from the doubles and triples
contributions. Notably the method, called correlation energy
extrapolation by intrinsic scaling (CEEIS), is effective for system-
atically approachmg the full correlation energy of SRCI'*® as well
as MRCI'”® expansions, so that bond breaking is described
accurately. By addltlonally including extrapolations to the com-
plete basis set limit'®® (as well as relativistic corrections), these
authors were able to calculate full diatomic potential energy
curves to extremely high accuracy.'”” %

Recently, Khait et al.*** developed the new hybrid variational-
perturbational MRCISD(TQ) approach, which builds a non-
iterative correction to the MR-CISD energies in order to
approximate the effects of triple and quadruple excitations.
Several numerical studies suggest that MRCISD(TQ) recovers
the dynamic electron correlation in a balanced way, ie., not
strongly dependent on the particular electronic state, and has
significant promise as a computationally tenable ultrahlgh preci-
sion approximation. Most recently, Kaith et al." introduced a
further variant (nR-MRCISD(TQ)), which is related to the By
method" and can be used to calculate the energy of several states
at the same time (multiroot). Its noniterative variant is close to
the orllglnal MRCISD(TQ) of ref 204. Test calculations have
shown' that the nR-MRCISD(TQ) method provides a very
high accuracy, even when there are strongly quasidegenerate
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states and the nonparallelity errors are typically improved by an
order of magnitude relative to MR-CISD.

2.1.5. Approximate Cl Methods. This section discusses
several methods in which the expansion spaces are approximated
relative to the MRCI or full-CI expansion space, or the Hamilto-
nian operator is approximated, or both.

2.1.5.1. Contracted MRCI Methods. There are two basic
contraction schemes used in CI calculations: internal and
external. Both are based on grouping together certain primitive
expansion functions. In an internally contracted MRCI (ic-
MRCI), the CI expansion space is generated by applying excita-
tion operators to the multiconfigurational reference wave func-
tion. In analogy to the SR case eqs 12 and 13

{Im);m = 1.Nam} = {19 190, 18, 195, .} (47)
with
Nee .
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(48)
This approach was proposed”® %" in the late 1970s and early

1980s. The ic-MRCI wave function is expanded as (cf. eq 16, the
form of the uncontracted MRCI wave function)

) =Gl + X + Y ~“l’lfff;>

ia i>ja>b

)
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~ab b
+ G 1T + (49)
The coefficients of the underlying determinant expansion space
are seen to be given by products of the reference coefficients and
CI expansion coefficients. For example, the double-excitation
terms may be written

Z ~ab| x;h> _

i>ja>
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> Y
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(50)

where |1 (m)j > (see eq 15) is a determinant i in the uncontracted
expansion space. The reference coefficients ¢** are fixed by the
MCSCEF calculation, so the number of variational parameters, the
o Z;b, Ez;k , .. coefficients, is comparable to a SR expansion.
Because the product (' “b) for fixed c,,"f does not have the full
flexibility of the uncontracted coefficients c(m) of eq 16, the
contracted expansion space is a subspace of the full uncontracted
MRCI expansion space and the computed eigenvalues are
variationally bounded from below by the uncontracted MRCI
energies. See Shavitt’®® for further discussion of the conse-
quences of the internal contraction approximation. The Hamil-
tonian matrix element contributions may be computed with
reduced density matrices within the occupied orbital space, and
once these density matrices are available, the computational
effort of each iteration of the optimization procedure is largely
independent of the number of reference functions. The main
advantage of the ic-MRCI scheme is that it requires less
computational effort and thereby allows the use of much larger
reference spaces than the traditional (uncontracted) MRCI
method. The most successful implementation of this approach
was reported by Werner and Knowles.”***'° In this implementation,
the expansion space is limited to single and double excitations,
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but only the double excitations are contracted; the full reference
space and the full space of uncontracted single-excitation con-
figurations are included in the expansion space. CEPA-type versions
(MR-ACPF, QDVPT, MR-CEPA(0)) have been introduced and
tested,”"" and also MR-AQCC is available.'*® The appropriate
version for excited states has also been proposed.”'* A parallel
version has been implemented, and its efficiency has been
demonstrated.”'® The ic-MRCI scheme, through its implementation
in MOLPRO,"*’ is very popular, and there is a very extensive list of
applications (over 1500) in the literature that use this method.

Unfortunately, in many applications the ic-MRCI method is
not considered as an approximate variant, and the resulting
contraction error (or uncertainty bound) is usually not discussed.
As should be clear from the discussion above, this is a rather
severe approximation that is usually valid, but there is no
systematic way to estimate the contraction error nor are there
systematic studies in the literature to assess these errors. For
partial studies on the accuracy of ic-MRCI see refs 214—216.

The MC-CEPA method of Fink and Steammler'>* also uses
the internally contracted approximation.

Note in passing that the popular CASPT2 method”'”**" may
be considered an approximation of the ic-MRCI approach. This
is a “diagonalize-then-perturb” approach (see section 2.1.5.7) in
which the reference function is first determined with the
diagonalization of H within the reference space, and then the
parameters ¢, Egb, Egﬁc, ... are determined with perturbation
theory. In the CASPT2 method, the expansion is limited up to
only contracted double excitations, and the second-order energy
is determined from the first-order corrections to the wave
function. This energy is not bounded from below by either the
uncontracted MRCI energy or the full-CI energy.

The externally contracted MRCI concept was introduced by
Siegbahn®** on the basis of the single-reference variant.”** This is
a “perturb-then-diagonalize” approach (see section 2.1.5.7). By
grouping together configurations with the same internal parts
and freezing their relative weights (e.g., for double excitations),

|m(if); ci) = ZbC(M);bW(m)f}h) (s1)

a>
with the contraction coefficients determined from first-order
perturbation theory

ol Hlp (m);")
Eo — (y(m); ||y (m);)

the number of variational parameters is drastically reduced. A
variant in which the denominator is computed with orbital
energy differences (i.e., Moller—Plesset PT rather than Epstein—
Nesbet PT) was also discussed.?*> Although the contraction
coefficients are defined with low-order PT, the final energies are
computed from the eigenpairs of the H matrix in the space
{|msref),|m(i);ci),|m(ij);ci); m = 1..Nyeg}. In a GUGA implemen-
tation, which addresses the problems associated with enumerat-
ing the individual terms in this method, the external (i.e., virtual)
orbitals may be placed at the bottom of the graph and the
dimension of the contracted expansion space is then the number
of internal walks in the Shavitt graph.*>* This expansion space,
which has a larger dimension than the reference space alone, is a
subspace of the full uncontracted space, and therefore the computed
eigenvalues are variationally bounded from below by the
uncontracted MRCI energies. The method is best suited for
ground and low-lying valence excited states, but less so for higher

c(m); = (52)

lying excited states with significant external orbital occupations.
It was shown that the loss of correlation energy is usually less than
2%. The effort required is comparable to a single iteration of an
uncontracted MRCI calculation. It was implented as a conventional
CI method (the matrix elements were explicitly constructed and
stored) in which the eigenpairs were solved iteratively.”** Unlike
the internally contracted method, the effort depends directly on
the dimension of the reference space (or, more specifically, on
the number of internal walks). Consequently, it is not as popular
as the ic-MRCI and CASPT?2 approaches which are much more
efficient for larger reference expansions. An analytic gradient has
been formulated by Lee,*** but, to our knowledge, it was never
implemented into computer code. Wang et al.>* have recently
suggested an improved procedure for the perturbational deter-
mination of the external contraction coefficients.

The simultaneous use of both internal and external contrac-
tion was suggested by Wang et al.>*® This particular implementa-
tion is based on an improved hole—particle formalism.**’
Although the initial results were very promising,226 only a few
applications have been reported.

2.1.5.2. Graphically Contracted Function Method. In the
graphically contracted function (GCF) method,”** %’ the wave
function is respresented using the graphical unitary group
approach®***3*23% in which the expansion CSFs of the unitary
group approach***~** are represented graphically. The wave
function is expanded as a linear combination of GCFs

Ngcr

) = ¥ clP) (53)

P=1

where the basis functions |P) in turn are contractions over the
CSF basis of dimension N¢gg

Ncse

PY = 3w lm) (54)

m=1

The contraction coefficients xf, are products of arc factors
associated with the arcs of the Shavitt graph

n

%, = uI:Il aﬁ(u,m) (85)
where 1(u,m) denotes the arc associated with orbital u in CSF . In
contrast to the internally and externally contracted CI approaches,
the arc factors are contraction coefficients over the full orbital range.
Each contracted basis function |P) corresponds to a particular set of
arc factors a’. Consequently, the wave function depends on the
linear coefficients cp and on the nonlinear arc factor parameters
" Initial calculations show that Nocr dimensions typically in
the range of 10—20 are sufficient to achieve chemical accuracy™"
for single-state calculations. For full-CI Shavitt graphs, the total
number of variational parameters grows only as O(NGCFNZn)
rather than exponentially n" as in the full-CI expansion.”*****

An energy expectation value requires the computation of
Hamiltonian

1
HPQ - <P|H|Q> = Z hpq<P‘qu|Q> + E 2 gpqrs<P|epqrs‘Q>
pq pars

(56)
and overlap Spy = (P|Q) (metric) matrix elements in the
contracted basis. The wave functions are optimized to minimize

the energy with respect to both the linear coeflicients ¢ and the
full set of nonlinear parameters . The variational energy
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corresponds to a solution of the generalized symmetric eigenva-
lue equation

Hc = ScE (57)

The Hpq and Spq matrix elements depend on the arc factors a’
and @9 and thus the linear expansion coefficients ¢ = c(&) and
the energy E = E(@) depend on the full set of arc factors. An
overlap matrix element Spy may be computed with a recursive
algorithm that requires O(N’n) effort for full-CI Shavitt graphs.”®
The full overlap matrix thereby requires O(Ngcg N’n) effort.
The scaling for other expansions is discussed in ref 228. A
Hamiltonian matrix element Hpg may be computed with a recursive
algorithm229 that requires O(N°n*) effort for full-CI Shavitt
graphs, and the full matrix H thereby requires O(Ngcr N’n*)
effort. Given a set of arc factors, a single Hpg, evaluation requires
about the same effort as a single iteration of an SCF method. The
optimization of wave functions requires the gradients of the energy
with respect to the nonlinear arc factor parameters. A recent gradient
algorithm has been implemented that requires O(NGCF2N2n4)
effort for full-CI Shavitt graphs;**® in fact the gradient costs about
three times that of the energy itself. Hamiltonian matrix and
gradient timings have been reported” for full-CI Shavitt graphs
aslarge as n=N=180and Ncgg ~ 10"°* The overlap <D|1/)> with
an arbitrary Slater determinant | D) may be computed with effort
that scales as O(NgcgNn); timings on a laptop computer of a few
milliseconds per determinant have been reported for full-CI
Shavitt graphsz33 as large as n = N = 260 and Ncgg ~ 10"%2. The
spin-density matrix, which may be used to compute M-depen-
dent expectation value properties (see eq 11), may be computed
with effort that scales as O(NgcrN°n®) for full-CI Shavitt
graphs; timings have been regorted234 for systems as large as
n =N =360 and Ncgg & 10**%. The method has been extended
to include spin-orbit interaction using multiheaded Shavitt
graphs 232235

The computational effort for these quantities does not depend
directly on the CSF expansion length Ncgg; thus, this method
allows wave function expansions with N¢gr values that are many
orders of magnitude larger than can be accommodated by
traditional electronic structure methods. For all of these matrix
elements and properties, the graphical representation of the
underlying CSF expansion space along with the orbital-by-orbital
contractions of the basis functions provided by eq 55 allows for
the development of fully recursive algorithms, thereby eliminat-
ing from practical consideration any direct dependence on the
large values of Ncgg.

The GCF method is characterized by several important
features. Because the method is formulated in terms of spin
eigenfunctions using GUGA, it does not suffer from spin con-
tamination or spin instability. Open-shell spin eigenfunctions are
included in the wave function expansions. This allows significant
flexibility in the individual GCF basis functions to describe
radicals and other open-shell electronic states. For example, a
single expansion term, Ngcr = 1, is sufficiently flexible to
correctly dissociate the triple bond of N, to the high-spin *S
ground-state atomic fragments. There are no artificial excitation-
level or occupation restrictions with respect to a reference
function or reference space. Because the wave function is
expanded as a linear combination of Ngcr basis functions, the
method can be used for both ground and excited electronic
states, the increased wave function flexibility leads to more accurate
wave functions, and this expansion allows the straightforward

computation of transition moments, nonadiabatic coupling, and
other properties that at present can only be computed reliably
with MCSCF and MRCI approaches. In analogy to the subspace
equation of the Lanczos or Davidson methods eq 29, the
eigenvalues of eq 57 satisfy the subspace bounds relations of
eqs 4 and S. State averaging allows the arc factors to be
optimized for a weighted average of states rather than for an
individual state.”**

The GCF method is still relatively immature, and only a
few chemical applications have been reported. These
include®***"** the dissociation of the ground 112+g state of
N,, the symmetric dissociation of the ground 1'A, state of H,O,
the reaction path curves for the 1—2"'A, states of Be + H, —
BeH,, and the dissociation of the X12+g, BlAg, and B'1XZ", states
of C,. To date, the main difficulty with general application of the
method is the nonlinear optimization of the arc factor
parameters.231

2.1.5.3. Density Matrix Renormalization Group. The expo-
nential scaling n" of the number of CSFs (or determinants) with
system size limits the practical applicability of the CASSCF
approach to active spaces with approximately 16 electrons and
orbitals. One approach that offers the possibility to eliminate this
scaling is the density matrix renormalization group (DMRG)
method originally developed by White in the context of con-
densed matter.”***** Although the DMRG method is relatively
recent in the field of ab initio quantum chemistry, it has already
proven useful in addressing questions that are outside of the
realm of traditional quantum chemistry approaches.***~>7*

Within the language of DMRG, orbitals occupy sites of a one-
dimensional lattice. In the two-site DMRG algorithm, the lattice
is divided into three blocks: (i) the system block, (ii) the
environment block, and (iii) two sites in between (note that some
authors in the literature use left and right to denote the system
and environment blocks, respectively). Each spatial orbital has
four possible Fock states |0) = {|00),|10),|01),|11)}, using the
spin-orbital occupation number representation. Hence, the total
number of many-electron states (determinants) for each of the
three blocks is 4™, 4% = 16, and 4" ™2, where , is the number of
sites (orbitals) in the system block, and # is the total number of
correlated orbitals. The wave function of the total system (also
called the superblock) is given by the tensor product space of the
many-particle states of the blocks

W)= Y Vuoopalas) ® 0s) © |og) ® |ag)

agOsOEag

Z wisiE|iS> ® |1E> (58)

isig

where the middle block is split into the Fock states |o;) for the
orbital next to the system block and |o) for the orbital next to
the environment block. To ensure that the wave function has the
proper symmetries (i.e., it has the right number of electrons and
spin projection S,), many terms are excluded from eq 58. Even
with the exclusion of these terms, the number of parameters in
eq 58 still scales exponentially with system size. To overcome this
exponential scaling, DMRG restricts the number of many-
electron states that describe the system and environment blocks.
The central question of DMRG then becomes: Given a pre-
defined threshold (usually denoted M) for the maximum number
of states, how does one obtain the optimal many-electron states?

The DMRG wave function is optimized via a sweep algorithm,
where sites are traversed sequentially, and each step in the sweep
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consists of three parts:**® blocking, diagonalization, and decima-
tion. At the start of the sweep, 1 is chosen to be small enough
such that the number of basis states in the system block does not
exceed M, and, hence, all basis states {|a,)} may be computed
explicitly. The Hamiltonian operator and elementary creation
and annihilation operators, as well as other operators that are
needed to compute the Hamiltonian for the superblock are
evaluated in this basis.>*® In addition, a suitable basis with
dimension M for the environment block must also be available
(from either a warm-up procedure***23026226427 o1 the pre-
vious sweep).

In the blocking step of the algorithm, the system and environ-
ment blocks are enlarged by one site as in eq 58, and the
Hamiltonian matrix for each new block is computed as a direct
product of the Hamiltonian matrices and elementary operators in
the old bases.”*® The dimension of the new many-electron spaces
(and the associated operators) is 4M, and the most expensive
part of the blocking step scales™ as O(M’n?).

During the diagonalization step, the lowest few eigenpairs of
the superblock Hamiltonian are computed using an iterative
subspace diagonalization method such as the Davidson algorithm
(see section 2.1.2). These methods require the repeated evalua-
tion of matrix vector products, wg = Hg pXg 5, where Hg  is the
superblock Hamiltonian (never explicitly computed or stored)
with dimension 16M>. It may seem that evaluation of these
matrix—vector products requires a computational effort propor-
tional to O(M*). However, utilizing the fact that the superblock
Hamiltonian is a sum of products of operators that act on the
system and environment blocks

> HigH, (59)
a

reduces the effort”° to O(M>n*). In eq 59, indices with an S or E
subscript denote many-electron states of the system or environ-
ment block, respectively, and the sum is over all terms of the
Hamiltonian. Note that the efficiency of the subspace method
also depends on the quality of the initial guess for the eigenvector
and the preconditioner used for computing vector updates.

In the decimation step, the many-electron reduced density
matrix for the system block is computed as

[Hsy E] iskg3jsle =

4M

Z Wi|0i><0i| (60)

i=1

Pigjs = Z |wisk5><¢}'skﬁ| =
kg

where the eigenvalues in the spectral representation obey**~ >

2, w; = 1. Note that this procedure is similar to the construction of
natural orbitals; however, the eigenvectors |0;) of the density
matrix in eq 60 are many-electron functions rather than one-
electron orbitals. It can be shown that the eigenvectors of the
density matrix minimize the distance in the quadratic
$44,245,272,273 i .
norm W) — |W)ll,, where the approximate wave
function is obtained by retaining the M eigenvectors with the
. . 244-246,248,256 ;

highest eigenvalues in eq 60.

Using these eigenvectors, the relevant operators for the system
and environment blocks are transformed according to

A = 0AO" (61)

Since one such transformation requires a computational effort
that is proportional to the cube of the number of states retained,
and there are on the order of n* operators that need to be
transformed, the overall cost of this step scales”° as O(M>n?).
The DMRG sweep is then continued at the blocking step.

A DMRG sweep is complete when one end of the lattice is
reached. At this point the system and environment are inter-
changed, and the sites are traversed in reverse order. The DMRG
sweeps continue until the energy is converged with respect to
sweeping. The computational effort for a single sweep of the
DMRG algorithm scales polynomially O(M>n*) + O(M*n*) with
the number of active orbitals.**’

As can be readily seen from eq 60, the accuracy of the DMRG
method depends on the number of states retained during the
decimation step. Indeed, it has been pointed out that DMRG is
expected to perform best for one-dimensional problems (such as
the one-dimensional Hubbard model and other one-dimensional
lattice models) and the treatment of higher dimensional pro-
blems (such as the two-dimensional lattice models or general
three-dimensional molecular systems) should present a greater
challenge since the decay of the eigenvalue spectrum of the
density matrix slows exponentially with inverse system size.””> As
discussed in more detail in ref 248, the leading term in the error in
the DMRG energy (OE) may be approximated as

In|0E| = — x(In M)* (62)

where x is a model-specific constant related to the correlation
length. In addition to errors associated with truncation, the
ordering of the orbitals introduces an “artificial lattice
correlation”*® that can affect the convergence of DMRG. Chan
and Head-Gordon**® used a reverse Cuthill—McKee reordering
of the orbitals to make the one-electron integral matrix close to
band-diagonal. Mitrushenkov et al?%3 suggest ordering the
orbitals on the basis of the diei()%onal two-electron integrals and
orbital energies. Moritz et al.>*® employ several criteria on the
basis of the one- and two-electron integrals as well as a genetic
algorithm to examine the optimal orbital ordering in DMRG
calculations involving the chromium dimer. Legeza et al.**® find
that the reverse Cuthill-McKee ordering of the orbitals, in
addition to reducing the error in the energy for a given number of
states, also reduces the number of sweeps for converging the
DMRG calculations.

Early applications of DMRG to ab initio quantum chemistry
focused on assessing the applicability of the method for small
molecules. Mitrushenkov et al.>** find that the full-CI spectro-
scopic constants for Be,, HF, and N, are accurately reproduced
with 500 states. Chan and Head-Gordon find that less than a
1000 states are sufficient to yield DMRG energies with mE), or
better accuracy for water in a DZP and TZ2P basis set.”***** For
the potential energy curve of the nitrogen dimer in a cc-pVDZ
basis set with the 1s electrons on nitrogen frozen, Chan et al.>!
find that DMRG with a 1000 states yields results with mE,,
accuracy and outperforms coupled-cluster theory with up to
hextuple excitations. In addition, their results indicate that the
inclusion of the 1s core into the DMRG calculations does not
significantly affect the number of states required to achieve sub-
mE; accuracy. Low-lying excited states of LiF,266 CHZ,267
HNCO,” acenes as large as pentacene (minimal basis and only
the 7 orbitals and electrons are correlated),”® CsH,*>* and
CoH?>"**"" have been studied with DMRG. More recently,
Kurashige and Yanai*** have applied their parallel DMRG code
to assess the accuracy of DMRG for applications to transition
metal complexes. Their results indicate that the number of
states required to achieve sub-mE), accuracy for these complexes
requires a larger number of states. For the chromium dimer with
a 30%* active space (24 electrons distributed in 30 orbitals; see
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section 2.2.3 for a discussion of wave function expansion spaces),
the M = 6400 results are approximately 1 mE, above the
extrapolated M = co DMRG energy, and the error is reduced
by approximately a factor of 2 for M = 10 000. These calculations
are the largest reported DMRG expansions; on four Intel Xeon
2.66 GHz Quad Core CPUs (using four threads per CPU) a
single sweep requires 6.2 h or more of wall time.”** Due to the
number of sweeps needed to converge the energy, DMRG is
more expensive than single-reference methods such as CCSD-
(T).2* Nonetheless, one has to consider that the number of
sweeps can be reduced by optimal ordering of the orbitals and
that DMRG is applicable to systems with strong static correlations.
In addition, the polynomial scaling of the DMRG algorithm allows
the essentially exact treatment of much larger Hilbert spaces than are
practical with traditional methods such as full-CL

More recently, Hachmann et al.>>* have developed the local
DMRG method (LDMRG) that utilizes integral screening and
localized orbitals to reduce the comzputational cost of the
LDMRG method to O(M?n®) + O(M’n*) per sweep. Due to
the local nature of electron correlation, for molecules that are
extended along one of their directions, the accuracy of LDMRG
does not depend on the number of states, and the effort scales
quadratically with the number of orbitals.*>® Applications of
LDMRG to all-trans polyenes (maximum active space of 48*°)
and linear hydrogen chains (as large as (H,)so with an active
space of 100'*°) demonstrate that LDMRG with M = 250 yields
energies with #Ej, accuracy. For the largest hydrogen chain with
M = 250, a single sweep took 73 min on 18 2.0 GHz Opteron
processors.”>> LDMRG has since been applied to study other
strongly correlated s7-systems such as (i) the radical character of
acenes™* (as large as 12-acene with an active space of 50°°), (ii)
the excited states of the acenes™® (as large as S-acene with an active
space of 22%), (iii) excitation energies and oscillator strengths in
B-carotene®>® (22%* active space and orbital optimization), and
(iv) spin gaps in the poly(m-phenylenecarbenes)*®® (46" active
space).

2.1.5.4. Individual Selection. The individually selected CI
method with extrapolation was introduced by Buenker and
Peyerimhoff”’* >7® in the 1970s (for a review up to 2000, see
ref 277). The idea is to partition the CI expansion space into two
subspaces: one contains the most important configurations,
which are treated explicitly, while the other ones are either
completely neglected or their contributions are approximated
by perturbation expressions. The energies are computed with
extrapolation methods to estimate the full-CI values. The
method of Peyerimhoff and Buenker has been implemented into
the MRD-CI program package,”’® which was widely used by
various groups to study problems in several fields of chemistry
including spectroscopy, reaction mechanisms, and so on. The
idea of the individually selected MRCI method was also used by
Whitten and Hackmeyer,””” in the CIPSI program by Malrieu
and co-workers,”*>**" and in the MELDF program of Davidson
and co-workers.”*> While older programs using individual selec-
tion could not use the direct-CI algorithm, more recently several
programs have appeared which address this limitation includin
MELDF,*** a code by Harrison,”®* CIPSL,**%%%¢ and MRD-CI*®
itself. Perhaps the most advanced algorithm has been presented
by Hanrath and Engels®®® in their DIESEL-MR-CI program. A
massively parallel implementation of selected CI has been
implemented by Stampfusset et al.****°

A general selection procedure has been developed by Bytautas
and Ruedenberg®" that focuses on identifying independently all

126

important configurations (rather than “configurational dead-
wood”) among the quadruple, quintuple, and sextuple excita-
tions. This “configurational livewood” is deduced in advance, on
the basis of information extracted from double and triple excita-
tions so that all important terms can be included in constructing
the wave function. The procedure is notably effective for the a
priori accounting of all configurations required for a specified
accuracy in a reference space, as illustrated for the CISDTQS6
wave functions of the molecules HNO, N, and NCCN.**
2.1.5.5. Local Approaches. Local approaches for CI and
CEPA were first applied by Saebo and Pulay,”** following the
same approach as their local perturbation theory. Walter and
Carter™” used the same techniques to first define a local MR-
CISD which eliminates simultaneous excitations from widely
separated internal orbitals. Shortly later they extended the
method to use the locality of the virtual orbitals as well.*** An
ACPF version was also constructed and tested.””> Similar
procedures have been put forward by Bories et al,”® where
the localized orbitals have been obtained from the LCASSCF
(local CASSCF) approach of Maynau et al.**” Recently, a linear
scaling version of the local MR-CISD method has been given by
Chwee and Carter®® and more recently further improved by
Cholesky decomposition (CD-LMRCISD for Cholesky-decom-
position local MR-CISD)**® and density fitting approach.>®
Applicability to excited states has been also demonstrated.*"
Reinhardt et al.>*>** have also developed a local contracted
CI method. In this approach localized bonds are used to define
contracted double excitation functions. The Hamiltonian of the
system is built from the small Hamiltonians of the localized
fragments. CEPA versions and inclusion of higher excitations are
also discussed.**®
2.1.5.6. Pseudospectral Methods. Pseudospectral methods
were introduced in quantum chemistry by Friesner.****%> The
details of this approximation have been reviewed by Martinez
and Carter.** A pseudospectral version of full-CI was introduced
by Martinez et al.**’ and of double-excitation CI (CID) by
Martinez and Carter.**® The first MRCI application was reported
by Murphy et al>® and shortly afterward by Martinez and
Carter.>'**'" Although the pseudospectral CI methods are very
precise, i.e., only small error of a few tenths of a mE}, is introduced
with respect to the traditional version, the savings in computer
time is minimal. Carter and Walter®'? report speedups of ~3.7
for SR-CID and even smaller speedups of ~2.2 for MR-CISD.
Reynolds et al.>"> combined the pseudospectral methods with
local treatment of correlation but reported “only meager com-
putational savings”>'> An improved implementation was reported
by Reynolds and Carter®** with overall gains in computer time in the
range of 3—35, but also with considerable reductions of disk usage. A
later version of mixed local and pseudospectral treatment was
published by Walter et al.*" with speedup of over a factor of 7.
For the sake of completeness, note that the term “reduced scaling
MR-CI” has been used by Carter et al. (e.g, see ref 312) to cover
both the localized approach and/or pseudospectral method.
2.1.5.7. Multireference Perturbational Approaches. A de-
tailed discussion of multireference perturbation theory (PT)
approaches is out of the scope of this review for two reasons:
(i) special techniques different from MRCI are used, and (ii)
the theory involved is very diversified and therefore a detailed
discussion would be very lengthy. However, MRCI and
multireference PT approaches are often used together in applica-
tions, and a short summary of different versions is perhaps of
interest for the reader of the present MRCI review.
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There are two basic ways to generalize perturbation theory for
multireference situations. One is the quasidegenerate perturba-
tion theory (QDPT) first introduced by Brandow”'® and later
developed by others.*"”**! In Brandow’s original formulation
the reference space was chosen as a CAS, and the many-electron
space, as usual in perturbation theory, was represented by
determinants. Since the theory closely follows many-body per-
turbation theory, the acronym MR-MBPT was often used for
these methods. Because of the QDPT background, these meth-
ods lead to the diagonalization of an effective Hamiltonian (often
called “perturb-then-diagonalize”) which leads to a simultaneous
description of several states. However, this approach results often
in the appearance of intruder states, expansion terms that are
outside of the reference space with low energies, sometimes even
lower than some of the reference space energies, and whose
contributions are not described well with PT expressions. To
avoid intruder states, a formulation with a restricted reference
space was introduced by Hose and Kaldor®'® and later by Meissner
and Bartlett,®'® while a different partition was used bzr Kozlowski
and Davidson®** and by Nakano.*>® Malrieu et al.**' suggested
the use of so-called intermediate Hamiltonians, which are built
from only a few functions of the CAS model space (see also
below). We note in passing that we have previously discussed the
closely related quasidegenerate variational perturbation theory
methods by Cave and Davidson'*'** and Murray et al.'*'
among CEPA-type MR methods (section 2.1.3.2).

The other possibility is the use of “diagonalize-then-perturb”
type methods, which usually start with a particular state obtained
from an MCSCF calculation and then follow similar lines as in
Moller—Plesset PT (therefore the name MR-MP is often used).
This state-specific formulation has clear practical advantages,
which accompany the theoretical disadvantage of lack of rigorous
size-extensivity. The closest analogy to the SR case can be
obtained with an internally contracted formulation.”*® The
GVB-MP2 of Wolinsky and Pulay®** was perhaps the first
successful application of this technique (see also the discussion
of earlier methods in ref 324). Roos and co-workers*'”>*!
introduced their own version under the name CASPT2 which
has became the most popular implementation (see also ref 123).
Versions not using internal contraction have been proposed by
Murphzr and Messmer,>*>*2¢ Kozlowski and Davidson,?” and
Hirao>***** (closely related to Nakano’s MC-QDPT method*>?).
The latter is implemented in GAMESS."*"'** CASPT2 and
related methods have been reviewed recently by Pulay.**°

Dyall*®' showed that a proper zero-order MR Hamiltonian
should include also two-electron terms. The NEVPT2 (N-
electron valence state perturbation theory) method by Malrieu
and co-workers™*>*** is based on this proposition. This method uses
excitation classes, an idea similar to the consideration of redundancies
in CEPA-type methods.'® The drawback of this method is its formal
complexity and dependence of the results on orbitals labels.*** A
quasidegenerate version has also been proposed recently.***

The disadvantage of the diagonalize-then-perturb methods is
that they do not take into account the relaxation of the reference
functions due to the correlation introduced by perturbation. This
relaxation may be included by using the above-mentioned
intermediate Hamiltonian idea by Malrieu et al,*'ie, including
a few of these reference functions in the perturbation ansatz, while
avoiding the disadvantages of full QDPT theory. Such methods
have been proposed by Shavitt**® (see also Stahlberg®*®) and by
Hoffman and co-workers™® 3* under the name GVVPT
(generalized Van Vleck perturbation theory). The latter method

has proven to yield quite accurate results in some complicated
situations, and also analytic gradients are available.**’

Finally we mention that interesting new ideas have been pro-
posed by Surjan et al.**' >* in their MC-PT (multiconfiguration
PT) versions, by Rolik and Szabados*** in multipartition multi-
reference many-body perturbation theory, and by Mukherjee and
co-workers in their state-specific (SS) MR-MBPT method. Ganl

2.1.5.8. Semiempirical Approaches. Semiempirical MRCI
approaches could also be considered as approximations to MRCL
These are not covered in this review since the main approximation is
the formation of the underlying semiempirical Hamiltonian and is
therefore outside of the scope of the present study. These methods
are, however, important within certain fields of chemistry; therefore
the interested readers are referred to recent applications (e.g, see
refs 347—350). A new implementation of MRCI in the semiempi-
rical framework has been reported recently by Lei at al.>'

2.1.6. Transition Moments. The calculation of transition
moments between different electronic states is required, for
example, for the simulation of absorption and emission spectra.
This calculation is straightforward if in the CI expansion the same
orbital basis is used for all states. This is not always the case,
considering especially, but not only, the CASSCF method where
it may be desirable to perform independent calculations for different
states. To take such cases into account, efficient methods have
been developed on the basis of biorthogonal orbitals for full-CI
by Moshinsky and Seligman.*** On the basis of this work,
Malmquist353 and Malmquist and Roos,*** within the framework
of the restricted active space SCF (RASSCF) approach, have
developed the CAS and RAS state interaction (CASSI and
RASSI) methods, respectively, which have been applied successfully
in many cases (see, e.g., refs 355 and 356). An extension to the
internally contracted CI method has been reported by Mitrush-
chenkov and Werner.**” Calculation of the transition moments
at the MR-AQCC and MR-ACPF levels is also possible.">’

2.2. MCSCF Method

The MCSCF method corresponds formally to a CI expansion for
the wave function in which both the orbitals and the configuration
expansion coefficients are optimized. However, practically there are
also numerous other important distinctions in the methods. First the
formalism for the MCSCF method is briefly reviewed. More com-
plete reviews of MCSCF methodology, implementations, and
applications are given in refs 19, 20, 214, 217— 219, 358, and 359.

2.2.1. MCSCF Wave Function Parameterization. The
optimization of the orbital variations and the configuration
expansion coefficients first requires a definition of the variational
parameters. This is complicated by the orthonormalization
constraints on the orbitals and the configuration expansion
coefficients. The configurations may be chosen to be either
determinants or CSFs. A CSF expansion is assumed in this
discussion, but the expressions in terms of primitive Slater
determinants follow in an analogous manner. One of the
common parametrizations for the orbital variations is based on
the fact that an orthogonal matrix U may be parametrized in
terms of the elements of the skew-symmetric matrix K.

L2
U=exp(K):1+K+£K +

1
+ K"+ . (63)

m!
with K,,; = —K_,.. The unique elements of K are unconstrained, a
feature that simplifies the formulation of the iterative wave
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function optimization and also the subsequent formulation of
analytic gradients which is discussed in section 2.5. The formal-
ism in this section focuses on real orbital and configuration
coefficients. In many practical calculations, the molecular orbitals
are chosen to transform as the irreps of the molecular point
group. In these situations, the orbitals within each irrep may be
grouped together and the transformation matrix U and the
parameters K assume a block-diagonal form. Given the orbital
matrix K there is a corresponding one-electron operator

K= Z KpgEpq = Z k(pq) (qu _Eqp)
P4 p>q

(64)

It is convenient to use the unique elements of the vector k (of
length n(n — 1)/2) in formulating the orbital variations. Given an
initial reference orthonormal orbital basis ¢°, and an arbitrary trial
orbital basis defined as ¢ = ¢°U, an arbitrary determinant or CSF
that is written in terms of these two bases satisfies the relation

lj; @) = exp(K)lj; ") (65)

Because this relation is satisfied for a single configuration, it is
also satisfied for an arbitrary linear combination of determinants
or CSFs.

Similarly, the CSF coefficient variations are formulated in
terms of the current reference wave function |mc) defined with
the CSF coefficients ¢ and some arbitrary, unnormalized, ortho-
gonal wave function

Ny — 1 Ny — 1
= X pulm)= ¥ palm (66)
m=1 m=1

The basis |m,) is some explicit representation of the orthogonal
complement to |mc). This basis is useful for formal derivations,
but the CSF basis is more useful for computer implementations.
Several choices for this orthogonal complement basis are dis-
cussed in ref 19. In the second expression in terms of the
primitive CSFs |m), the vector p satisfies c-p = 0. The CSF
coefficient variations may then be written with the operator

exp(P) = 1

o feoslpl =1 —sinlpl Y (e
=+ (|mc), . _
(e lpl™"le) <sm|p| coslp| 1 ) \ Ipl ¢
(67)
with
P = [pXmc| — [mcXp| = Y, puPn (68)
and P, = [m)(mc| — |mc)(m|. In this form, it is clear that the

operator exp(P) defines a plane rotation between the two
normalized basis vectors |mc) and |p|_l|p) within the CSF
expansion space, and in particular

exp(P)|mc) = cos|p|[me) + sin|p|(|p| " [p)) (69)

This shows how an arbitrary normalized vector within the CSF
expansion space depends on the direction p, which defines the
plane, and on the magnitude |p|, which defines the angle of
rotation within this plane. This expression also shows how, given
areference wave function ¢ and a set of variational parameters p, a

new trial wave function is constructed, with no further numerical
approximation, for the subsequent iterations. These two operators
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allow an arbitrary trial wave function, with arbitrary orthonormal
orbitals and arbitrary normalized CSF coefhicients, to be written

™) = exp(K) exp(P)|me) (70)

2.2.2. MCSCF Optimization Methods. The expectation
value for the trial function in eq 70 may be written as
Etrial — <wtrial| H|¢trial>
= (mclexp( — P) exp( — K)H exp(K) exp(P)[me)  (71)

The commutator expansion for the exponential operators allows
the expansion of the trial energy in terms of the parameters

AT = (K p").
E"(kp) = (mc|H + [H,K] + [H,P] + [[H,K],P]

1
2

k T fme
ey (X)) (5
(k)" G Kk
orb, csf
4= orb, +..
2<P> ( Gcsf,csf)(P)

The elements of the wave function optimization gradient f" and
symmetric Hessian G™ are

—i—%[[H,K],K] + ~[[H,P],P] + ...|mc)

mc
orb, orb
mc
csf, orb

(72)

oy = (mel[H, Epg — Egp)|me) (73)

[ = (me|[H, P}]|me) (74)
1 = Sonel[[H, By — By, B — ]

+ [[H,E;s — Eg), Epg — Egp||mc) (75)

Gy s = (mc|[[H, Epq — Egp], Pj]|mc) (76)

e = (me|[[H, Pj], P]mc) (77)

Applying the variational condition to the trial energy gives
OE"™ (K, p)/ ok (0 [t
OE™(kp)/dp | — \0 ) \ £l
mc GmC k
+ c:nrlca, orb c:y!l:?, csf ¥ o
csf, orb csf, csf P

79)
This infinite-order expression has no closed-form solution, so
numerical iterative methods must be used to solve for the k and p
parameters. Various iterative optimization methods involve
truncation of the optimization equation (usually at first or second
order, combined also with approximations to some of the matrix
elements) along with a replacement of the reference wave func-
tion |mc) by |™) using the approximate k and p parameters
according to eq 70 for the subsequent iteration. When convergence
is achieved, the gradient ™ is zero and a solution to the nonlinear
equation is obviously given by 4 = 0. The simple truncation at
second order, resulting in a Newton—Raphson iterative procedure,
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shows notoriously poor global convergence behavior, and con-
sequently various stabilization methods are imposed in order to
overcome these numerical difficulties.'®*'***%**!* 1n some
situations, it is desirable to parametrize the trial energy in terms
of the orbital variations only, along with the assumption that the
CSF coefficients are always optimal. The appropriate trial energy
expression in this case is written

rial mc mc
Et (k) =E + kaorb

mc o
orb, orb

mc

1 -1
+EkT( csf,csf) G::yécf,orb)k +

(y)nri), csf (
(79)

This equation, based on the partitioned orbital Hessian matrix,
also allows for the analysis of the eigenvalue spectrum of the wave
function Hessian matrix for both ground and excited states.'3%!
For example, it is clear from the form of eq 79 that a variationally
minimized energy, whether for a ground state or an excited
electronic state, must correspond to a positive-definite parti-
tioned orbital Hessian matrix.

There are several common approximations used in MCSCF
methods. The evaluation of the commutators in eqs 73—77
allows the elements to be written directly in terms of the current
Hamiltonian integrals and the current reduced density and
transition matrix elements.

B = (mc|H|me) = Z hpqDpq + Z (pqlrs)dpgrs (80)
pa Pq

g = 2(Fpg — Fyp) (81)
Epq = Y, huDig + Y, (pt|uv)dgs (82)
t tuv
= 2j|H|me)
= X D+ X (palrs) e (83)
pa pars
G;nr;rs = (1 - qu)(l - PTS){(F}JS + Fsp)dqr - thqur
+ Z 4(pulrv)dgus + 2(pr|uv)dgan } (84)
Gy = 401 —qu){g hpt q:m + tZ(pruV)chIZE} (85)
e = 2G[H — E™k) (86)

(For notational brevity, the above expressions are written with
the index-permutation operators P, and P,.) Most MCSCF
calculations partition the orbitals into three disjoint subsets: the
inactive orbitals which are doubly occupied in each CSF in the
reference expansion space, the active orbitals which have arbitrary
occupations (0, 1, or 2) in the various CSFs, and the virtual
orbitals which are unoccupied in each of the reference CSFs. The
inactive and active orbitals together form the occupied orbital
subset. Orbital rotations between pairs of inactive orbitals leave
each individual CSF unchanged, the corresponding gradient
element is always zero, and this set of orbital rotation variables
k; is trivially redundant. Similarly, rotations k,, between two
virtual orbitals always leaves each CSF unchanged and are also
trivially redundant. In most MCSCF implementations, these
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rotation variables are simply ignored (set to zero) during the
orbital optimization procedure. A particular active—active rota-
tion may or may not be redundant; some examples are discussed
below. The density matrix elements in the above general expres-
sions simplify with this type of orbital partitioning. If any density
matrix subscript indexes a virtual orbital, then that element is
zero; this places restrictions on the summation indices in the above
expressions to range over only the occupied orbitals. Furthermore, if
a subscript of a density matrix indexes an inactive orbital, then
that density matrix element may be simplified with the identities

Dit = Zéit (87)

1 1
dituv - DitDuv - _Dithv - _Dithu (88)
4 4
with i inactive and t,u,v general. This effectively means that only
density matrix elements with active orbital indices need to be
computed explicitly. This partitioning of the orbitals results in
four different types of orbital gradient terms (with orbital indices
ip, ia, pq, and pa) and in the corresponding 10 different types of
orbital—orbital Hessian terms. Examination of the E*', the CSF
gradient £, and the CSF Hessian G;™ expressions show that
only the subset of integrals with all occupied orbital indices are
required for these elements. If there are o occupied orbitals and n
total orbitals, then this two-electron integral subset requires
about ((*/,)on* + (*/4)0’n” + (*/13)0*n) effort to compute using
the normal four-step integral transformation algorithm com-
pared to about 4n°, (**/,,)n°, or (**/,4)n° effort for the full
transformation, dependin§ on the treatment of the orbital index
permutation symmetry.>*> Only integrals with at most one
virtual index are required for the orbital gradient fy; and the
orbital-CSF Hessian elements G, ; these integrals require an
additional (("/¢)o*n* + (°/1,)0*n) effort. Finally, integrals with at
most two virtual indices are required for the orbital—orbital
Hessian elements G;f;rs; these integrals require about (on* +
(*/)0’n* — (*/6)0™n) effort, which is about a factor of 2 larger
than that required for the energy and gradient terms. This shows
that substantial effort can be eliminated by restricting the two-
electron integral transformation to compute only the required
subset at any time. There is a substantial history within the
computational chemistry community related to efficient compu-
tation of various subsets of the two-electron integrals, and it is
noted here only that similar orbital index subset restrictions apply
to many other electronic structure methods (e.g., the B; approx-
imation and various second-order PT methods).

The orbital —orbital Hessian elements Gy, . in eq 84 are seen
to consist of terms computed from the Fock matrix elements F,
which in turn require only the zero- and one-virtual integral
subsets, and only the terms in the last summation require the
two-virtual integral subset. As discussed above, the computation
of these latter integrals requires about twice the computational
effort of the smaller subset. If the orbital —orbital Hessian matrix
is approximated with only the terms involving the F matrix
elements, and if that approximation is sufficient to allow conver-
gence with less than twice the number of iterations of the full
second-order method, then the overall effort for the integral
transformation steps would be less than that for the full second-
order procedure. This approximation, along with the total neglect of
the orbital—CSF and CSF—CSF blocks of the Hessian matrices,
is used in the CASSCF implementation in MOLCAS."*?
These approximations make it problematic to converge to
excited states—the orbital variations tend to cause variational
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collapse of the excited states, resulting in oscillatory convergence
and other difficulties. However, other levels of approximation,
which include these missing Hessian matrix blocks while still
using only the zero- and one-virtual integral subsets, could be
implemented for these kinds of excited-state calculations. Cha-
ban et al.**®* demonstrated the convergence characteristics of
several MCSCF approaches using a diagonal Hessian approx-
imation. Other approximations used in MCSCF calculations
involve approximations to the molecular integrals. These have
been done with pseudospectral methods,****°® RI methods,""
and the use of incomplete Cholesky factorizations.>>~>°

In many situations, the MCSCF energies and wave functions
themselves are only of secondary importance; the primary goal is
the computation of the orbitals which are then used in a
subsequent MRCI calculation. These orbitals are used to de-
scribe simultaneously several electronic states, sometimes with
the same spin values S, and sometimes with different S values (see
eq 10). However, the optimization of the MCSCF orbitals for a
particular state sometimes causes the subsequent MRCI calcula-
tion to be biased. For example, excitation energies from lower
states might be systematically underestimated while excitation
energies to higher states are overestimated, or other properties,
such as dipole moments or (*) expectation values might be
biased by the orbital choice. To avoid this bias, it is typical to
optimize the MCSCF orbitals to minimize a weighted average of
the states of interest,**%>!+219363

Nuy
E=Y wkE (89)
k=1

The optimization of the orbitals is done through the minimiza-
tion.

(90)

with 2 wy = 1. The individual states in the averaging procedure
are described with optimal CSF coefficients ¢, with each vector k
satisfying the eigenvalue equation. It is only the variation of the
orbitals, which are shared by all of the states in the averaging
procedure, that is described with a single set of parameters k. This
state-average optimization also addresses the problematic con-
vergence of first-order convergent MCSCF optimizations for
excited states; if all lower states are included in the averaging
procedure, then variational collapse during the excited-state
orbital optimization process can be avoided.*'¥****'* Unlike
the single-state optimization case, the individual gradients E;/
ok are generally nonzero; it is only the weighted average that is
zero at convergence of the optimization procedure. If the
individually optimized orbitals for the individual states are
similar, then the individual gradients from the state-averaged
procedure are small, but if there is strong competition among the
states for the orbitals to have very different character, then the
individual gradients from the state-averaged procedure are large.
If the individual gradients are too large, then the state-averaging
procedure is inappropriate. In this case, additional CSFs should
be added to the expansion space, or the active orbital space
should be increased, in order for the wave function to have
sufficient flexibility. This situation can be detected by monitoring
the individual gradients during the optimization procedure and
for the final converged orbitals.

2.2.3. MCSCF Wave Function Expansions. One of the
important differences between MCSCF and MRCI methods is
the choice of expansion space. MCSCF expansion spaces are
discussed in detail in ref 19, and only some of the important
features are mentioned here. The MCSCF expansion space is
chosen typically to describe the important valence correlation
effects. In a PES calculation, for example, the relevant bond-
breaking and spin-recoupling effects should be described well by
the MCSCF expansion. In a FORS/CAS expansion,”'**%*3% for
example, the important valence orbitals and electrons would be
identified and included in the active orbital list, and then all
possible CSFs (i.e., all possible occupations and spin couplings)
with those active orbitals and electrons would be included in the
MCSCEF expansion. There are several important features of this
expansion form. One is that all active—active orbital rotations are
redundant, which means that all orbital parameters of the type k,,
for active orbital indices p and g can be ignored during the
optimization. This means that one block of the orbital gradient
vector and four blocks of the orbital —orbital Hessian matrix can
be ignored, which simplifies the implementation considerably.
Another desirable feature is that such expansions are size-
consistent. Separate calculations on molecular fragments A
and B are consistent with the calculation on the combined
molecule AB with noninteracting fragments provided the AB
active orbital space is the union of the A and B active orbital
spaces; in such cases, the wave functions satisfy the multi-
plication property |[1*") = | ®y®), and the energies satisfy
the sum property Exp = E5 + Ep. Furthermore, if the active
spaces are chosen appropriately, these relations hold even, for
example, for closed-shell molecules that dissociate to open-
shell fragments and also for other types of spin-recoupling
processes.

For larger molecules, not all valence orbitals and electrons can
be included in FORS/CAS expansions due to the large expansion
dimensions, and a selection process is required. Ignoring any
simplifications due to point group symmetry, the number of
expansion terms for such an expansion is given by

- (1)(5)

2 1/n+ 1 n—+ 1
N O 25+ 177 1 (92)
o n+1 EN—S EN+S+1

for expansions in terms of Slater determinants and CSFs,
respectively. In these expressions, N and #n refer only to the
active electrons and orbitals, respectively, not to those for the full
molecule. It is convenient to denote such an expansion space as
(n™),in analogy to the familiar atomic shell notation, meaning N
electrons distributed in n orbitals. Another common notation for
such an expansion is CAS(N,n); the more compact notation will
be used in this discussion. Practically speaking, such FORS/CAS
expansions are limited to about N & 16 electrons and n & 16, for
which Ny (16'°) = 1.66 x 10® and N_(16'°) = 3.48 x 10 for
M = 0 and S = 0, respectively, according to eqs 10 and 11.
Although even larger MCSCEF calculations are possible, it is then
extremely difficult to do any kind of subsequent MRCI calcula-
tion based on these larger reference expansion spaces. Conse-
quently, additional orbital occupation restrictions are typically
imposed in order to reduce the expansion length. Two of the
more commonly encountered types of occupation restrictions
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will be discussed here. A wide range of other restricted expansion
spaces are discussed in ref 19.

One type of occupation restriction that is imposed on MCSCF
expansions is termed a direct-product expansion.'” With this
approach, the active orbital space is divided into an arbitrary
number of disjoint subsets, and each of these orbital subspaces is
associated with a fixed number of electrons. Within each sub-
space, all possible orbital occupations are allowed, and the final
expansion space is then the direct product of all combinations of
all these occupations. In the occupation restricted multiple active
space (ORMAS) approach of Ivanic**?%® this is termed an
ORMASO expansion. There are two important features of direct-
product expansions. The first is that the energies are rigorously
size-consistent provided the orbital subsets of the fragments are
taken also as the orbital subsets of the molecule. This follows
from the product nature of the expansion space. The second
important feature is that the orbital rotations within each orbital
subset are redundant. The orbitals within a subset form an
invariant subspace. This means practically that these rotations
should be ignored in setting up the orbital-rotation vector k, and
it also means that any arbitrary choice of orbital rotations within
each of the product spaces may be chosen for the final optimized
orbitals. This last step is called orbital resolution, and it may be
imposed to facilitate analysis of the wave function or to simplify
some aspect of a subsequent MRCI calculation. Orbital resolu-
tions based on spatial localization (both with and without
orthogonalization constraints), natural orbitals, or canonical
orbitals based on the diagonalization of Fock matrices are
common. In all of these situations, a particular orbital rotation
can be classified as either essential (it is required in order to
minimize the energy) or redundant (it has no effect on the
wave function or energy, provided the CSF coefficients are
allowed to adjust accordingly). This essential/redundant
structure of the orbital rotation parameters is discussed in
more detail in ref 21.

For an example of a direct-product expansion, suppose that 16
active orbitals are divided into eight pairs and two electrons are
associated with each orbital pair. Each individual pair would then
have three possible occupations: ©1%, @102, and @,> which can
be denoted by the full-CI designation 2° The direct product of
the eight subspaces, denoted 2°2°2°22%2°2*2* would then
consist of 3° = 6561 possible orbital occupations. Each of the
open-shell occupations in a direct-product expansion can have
multiple spin couplings, and in this particular example the 6561
orbital occupations result in 71 398 singlet CSFs, which is several
orders of magnitude smaller than the 16'® expansion discussed
above for this same active orbital space. Note that although
there are severe occupation restrictions imposed on this expan-
sion space, the overall excitation level relative to a single
configuration is not artificially limited; in this particular exam-
ple, there are 16-fold excitations in the expansion space, the
same as for the 16'® full-CI expansion. This particular type of
direct-product expansion, in which pairs of electrons are constrained
to occupy pairs of orbitals, is called the GVB-RCI expansion, and
a general expression for the CSF expansion dimension for
singlets is

2 —k
NGVB —RCI _ " 2k n/2

cs - (93)
f Eok+ 1\ k k

The expansion dimension in terms of determinants is the same
as eq 93 except that the (k + 1) factor in the denominator is
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dropped.'” The GVB-RCI expansion is appealing because the
optimal orbitals tend to localize into chemically intuitive
bonding and antibonding pairs. Given an arbitrary molecule,
it is usually straightforward to construct the GVB-RCI expan-
sion along with a reasonable set of initial orbitals from the
Lewis dot structure for the molecule, and this expansion is
capable of breaking single and multiple bonds and dissociating
correctly in many situations to the correct high-spin or low-
spin molecular fragments. Due to the direct-product construc-
tion of the expansion space, the resulting wave functions and
energies are rigorously size-consistent. Another useful feature
of GVB-RCI expansions, and direct-product expansions in
general, is that the two-particle density matrix is relatively
sparse; the nonzero elements d,,, have orbital indices in
which either all correspond to a single invariant subspace or
two indices belong to one subspace and the other two indices
belong to another subspace. In the GVB-RCI case, there are
only about (*°/,)n* unique nonzero elements compared to
about ('/g)n* for the general full-CI expansion. Because of
these features, the GVB-RCI expansion often results in an
excellent reference expansion space for subsequent MRCI
calculations. However, excited states and sometimes even
ground states are not described adequately by the GVB-RCI
expansion. Three representative examples of failures are the
benzene molecule for which the GVB-RCI expansion computes
a symmetry-broken wave function with localized double bonds
rather than the delocalized aromatic structure, the CO, molecule
for which a symmetry-broken D,; wave function is computed
rather than the correct D, wave function, and the O; molecule
for which important interpair correlations between the lone-pair
7 orbital and the two open-shell 77 orbitals are poorly described.
In all of these cases, a generalization of the occupations within the
direct-product expansion form solves these issues but at the
expense of larger expansion spaces. In the benzene case the three
7t orbital products 2*2°2> can be reglaced with the larger 6°
expansion, in the CO, case the 17,”(27,37,)"( IJTyZJ'Ey)23JTy2
direct product can be replaced with the (1m2m3m,)*
(17,271,37,)* direct product, and in the Oj case the 17*(2737)*
product can be replaced with the (17127137)* subspace. For a
more complete discussion of these issues with application to
several molecules, see ref 369.

Another tyge of occupation restriction is the restricted active
space (RAS).>”® In this approach, the active orbitals are divided into
subsets, labeled I, II, and III. A minimum total occupation is imposed
on subspace I, a maximum occupation is imposed on subspace III,
and subspace II is allowed any occupation consistent with the total
number of electrons. In general, this expansion space is equivalent to
the union of several direct-product expansion spaces, each with the
same orbital subset partitioning but with different numbers of
subspace electrons. If ny corresponds to the orbitals in each of
the three subsets, X = {LILII} and if N¥™ and N¥™ are the
corresponding minimum and maximum occupations for X = {LIII},
then the RAS expansion space may be written symbolically as

max ‘max
NI NHI

{RAS} = U

nnfnj;; j+ k+l=Nandk=0
= N 1 By

(94)

The orbital subspace invariance properties for the RAS expansion
follow from those of the component direct-product expansions.
Specifically, each subspace X = {LILIII} is invariant because it is
invariant in each of the individual direct-product expansions in
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eq 94. For example, for the N = n = 16 expansion used in the
previous discussions, suppose the first four orbitals, subspace I,
are required to have at least four electrons (and no more than
eight), the last four orbitals, subspace 11, are allowed to have no
more than four electrons, and the second group of eight orbitals,
subspace II, is occupied by the complement of electrons so that
the total in each CSF is 16. The RAS expansion then consists of
the union of 25 direct-product expansions of the form 484’ for
the five values of j = 4...8, the five values of | = 0...4, and with k =
16 — j — I This expansion consists of 16462550 CSFs or
79 342 342 determinants, about half of that for the 16'® expan-
sion. For this RAS expansion, the six orbital rotations within
subspace I are redundant, the 28 rotations within subspace II are
redundant, and the six rotations within subspace III are redun-
dant. All other orbital rotations are essential. The ORMAS
expansion implemented by Ivanic**” may be regarded as a
generalization of the RAS expansion approach to allow an
arbitrary number of orbital subsets, with each subset asso-
ciated with its own minimum and maximum occupation. This
approach is also termed the generalized active space (GAS)
expansion.**®** The ORMAS/GAS expansion is also a union of
multiple direct-product expansions, and therefore the orbital
rotations within each orbital subspace are redundant. One of the
practical features of RAS expansions is that the coupling coeffi-
cients can be generated as products of factors that are computed
separately for the three orbital subspaces.>’® Unlike the sparse
nature of the two-particle density matrix for direct-product
expansions, the RAS/ORMAS/GAS expansion form generally
results in a dense 2-RDM.

Size-consistency can be achieved with the RAS/ORMAS/GAS
expansion approach in certain special situations, but in general
this expansion form is not size-consistent. To demonstrate this,
consider a simple example with RAS expansions for fragments A
and B compared to the combined RAS-AB expansion for the
molecule. Suppose fragment A has four electrons and has
subspaces I, with two orbitals {¢14¢,a} occupied by at least
two electrons, and IIL,, with two orbitals {35044} occupied by
no more than two electrons. This RAS expansion is equivalent to
an SRCI-SD expansion from the configuration |(p21 A(p22A>.
Similarly, let fragment B with four electrons have subspaces I,
with two orbitals {¢1p¢,p} occupied by at least two electrons,
and I1l, with two orbitals {34} occupied by no more than
two electrons. To include all possible product configurations
in the RAS-AB expansion, the I,5 subspace must consist of
four orbitals {QA(P2a¢ 180} occupied by at least four
electrons, and the IIIyp subspace must consist of four orbitals
{0340 440 3pP4p} occupied by no more than four electrons. This
corresponds to the SRCI-SDTQ_expansion from the configura-
tion |QDZ1A(P22A§021B§0223>. The inconsistency arises by noting
that a configuration such as |(,021 APAQ 350 45), which corre-
sponds to a quadruple excitation on fragment B, is included in
this RAS-AB expansion space, but it does not appear in the
product of the fragment RAS expansions. Thus this RAS-AB
expansion space is more flexible than it should be, the AB wave
function does not satisfy the product requirement, and Epp <
E4 + Eg. On the other hand, if the Iy subspace is required to have
atleast six electrons, and the III,p subspace is restricted to have no
more than two electrons, then there would be configurations in
the product expansion that would not be included in this RAS-AB
expansion, this expansion space would be insufficiently flexible,
and Exp > E5 + Ep. This is an example of the usual size-con-
sistency problem for SRCI-SD expansions. There is no choice of

occupation limits for the Iyp and IlIyp orbital subspaces that
would result in exact size-consistency. The lack of size-consistency
for RAS/ORMAS/GAS expansions has been discussed and demon-
strated by Ivanic for the 2NO, — N,0O, reaction.®®

2.2.4. Computing the Matrix Exponential. Given the
skew-symmetric matrix K from an iteration of the MCSCF
procedure, it is necessary to compute the orthogonal matrix
U = exp(K). There are several approaches to compute the matrix
exponential.>”"*”* Errors may be tolerated in some situations in
the comgutation of U provided they are sufficiently small (e.g.,
<O(|K[) for a second-order convergent wave function optimi-
zation procedure), but it is essential that the final U be ortho-
gonal to within a small factor of the machine precision. In other
situations, the elements of U must be accurate to within some
tolerance regardless of the size of the matrix elements K. There-
fore the goal is an efficient procedure that satisfies both kinds of
accuracy criteria. One obvious approach to compute U is to
truncate the Taylor expansion in eq 63 at some value m. This may
be done recursively with the sequence,

v =1, xU =K
Ul = uli-b 4 x0) (95)
xG+n — 1 KX@}J':l m
G+ 1)

Either eq 95 may be implemented with a predetermined trunca-
tion order m or m may be determined dynamically by monitoring
||X(’)||. This is a relatively expensive algorithm since each step
requires about 27> arithmetic operations for the matrix product,
ignoring any sparsity in the matrix K. With termination after m
steps, the matrix U = U™ s not strictly orthogonal due to the
truncation error, so a subsequent orthonormalization step re-
quires an additional 21> operation.

The identity exp(K) = (exp(K/ k) may be used to compute
the matrix exponential with the scaling and squaring method.>”
The matrix Z is initialized as Z = K/2* for some suitably large
value of p for which exp(Z) may be computed accurately with a
small value of m in eq 95. U is then computed with p recursive
squaring steps. For a specified error tolerance, this approach is
usually cheaper than the straightforward truncated Taylor ex-
pansion. Either the truncated exp(Z) must be orthogonalized or
the resulting matrix U must be orthogonalized afterward because
the truncation error accumulates with each recursive squaring
step.374

A closely related approach is based on the rational function
approximation

Ul = qu(K)_lpkM(K) (96)

Here pgn(K) and g, (K) are (commuting) polynomials of
degree k and m, respectively. In addition to the recursive effort
for the matrix powers for the two polynomials, the linear
equation solutions in eq 96 for ul/m requires about the same
effort as two matrix multiplications. If the expansion coefficients
in the two polynomials are chosen to reproduce the first k + m
Taylor expansion coeflicients of the exponential, this is a Padé
approximant and the polynomial coeflicients have known closed-
form expressions.””> A simple example is v = (1 -
(1/2)K) (1 + (1/2)K) which is correct through second order.
Although U /1 is also only an approximation and suffers from
truncation error, it is orthogonal in exact arithmetic. Thus no
subsequent orthogonalization step is required unless the
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condition number of the matrix (1 — (/,)K) is exceedingly
large. The condition number of a matrix is the ratio of the largest
and smallest singular values, and large values can result in large
numerical errors in linear and eigenvector equations when using
finite-precision floating point arithmetic. Other more general
Pmm(K) and g,,,,,(K) diagonal polynomials may also be chosen to
satisfy this orthogonal relation. This rational function approx-
imation can be combined with recursive squaring.’”* For a
given error tolerance, lower order k and m may be used, and
this can result in overall less effort. This initial scaling also
reduces the impact of error growth due to the condition
number of the q,,(K) matrix. In those situations for which
U*™ in the initial squaring step is orthogonal, the final
computed matrix is also orthogonal. Otherwise, an explicit
orthogonalization either before or after the recursive squaring
may be necessary.

The matrix K is normal (it commutes with its transpose), so it
may be diagonalized by a complex unitary matrix V. It has purely
imaginary eigenvalues, the nonzero elements of which occur in
complex conjugate pairs.

KV = Vil (97)

This allows the matrix exponential to be computed as
U = exp(K) = Vexp(id)V' = V(cos(4) + isin(4))V*
(98)

The result should be purely real, but in finite precision arithmetic
there is always some small imaginary error that must be
discarded. Furthermore, the complex diagonalization costs about
four times that of a comparable real symmetric diagonalization.
In a diagonalization-based approach, the full eigenpair spectrum
is required, so direct methods which require O(n”) effort are
typically employed.

The negative semidefinite symmetric matrix K> may be
diagonalized with a real orthogonal matrix X

K’X = XA (99)
Using the purely real diagonal matrix d = Sqrt(—A4), the matrix
exponential can be computed®**” as

U = exp(K) = X cos(d)XT + KXd ' sin(d)X"  (100)
Zero diagonal elements are treated with lim, ¢ sin(x)/x = 1.
This expression has the advantage that the entire operation
involves only real arithmetic, and although it has no truncation
error, it suffers from numerical error due to the larger condition
number of the matrix K> relative to that of the matrix K.
Consequently a subsequent orthonormalization step is some-
times required. In addition to the effort for the real symmetric
diagonalization, effort for three matrix products is also required.

The final approach relies on the fact that the matrix K may be
factored in the form

K = WDW' (101)

with real orthogonal W and a skew-symmetric block diagonal
matrix D. The diagonal subblocks are either 2 x 2 or 1 X 1 with
all diagonal elements zero. The factorization in eq 101 is
described in TOMS Algorithm 530 by Ward and Gray,”® and
the corresponding software is available from netlib.>”” The
matrix exponential may then be computed as exp(K) = Wexp-
(D)W', where the 2 x 2 subblocks of the exponential matrix are

133

given as

0o -0 cos(f) —sin(6)
“Plo o ~ \sin(0)  cos(0)

The entire procedure consists of sequences of products of ortho-
gonal transformations, so there is no growth of roundoff errors.
This is generally the recommended approach for computing the
accurate matrix exponential for the orbital transformation. It requires
only real arithmetic, it only requires effort comparable to a single real
symmetric matrix diagonalization plus a single matrix product, the
algorithm has no truncation error, and the resulting matrix U is
orthogonal to within a small factor of the machine precision.

(102)

2.3. New Multireference Approaches

Several new methods that strive to address the shortcomings
of MRCI have been developed recently. Two such methods are
the canonical transformation (CT) theory developed by Yanai
and Chan®”**” and the anti-Hermitian contracted Schrodinger
equation (ACSE) developed by Mazziotti.*** 3%

2.3.1. Density-Based Approach to Dynamical Correla-
tion. Although other densitgf—based methods related to the ACSE
have been developed,®** *® the treatment of dynamic correla-
tion within the context of the ACSE is discussed here. Consider
the density-matrix formulation of the Schrodinger equation

HYD = END (103)
where H is the Hamiltonian, "D = WW* is the N-electron
density, and E is the energy. Contraction of eq 103 onto the space
of two particles yields the contracted Schrodinger equation
(CSE), which in second-quantized notation takes the form

(WP H|W) = E*D}), (104)
In eq 104, °T" is the two-electron reduced density operator
(RDO), and the elements of the two-particle reduced density
matrix (2-RDM)

1 . Lo

ZDZ,II = £<1P|2r;;’,|lp> = £<1P|a;ra;a1ak\‘l’) (105)
are defined here such that the trace of the 2-RDM is N(N — 1) /2.
Because the Hamiltonian contains at most two-electron interac-
tions, it can be verified that the left-hand side of the CSE in
eq 104 depends not only on the 2-RDM but also on the 3- and
4-RDMs. As a result, until recently work in the CSE community
has focused on developing accurate approximations to the 3- and
4-RDMs in terms of the 1- and 2-RDMs.

An alternative approach is obtained when the CSE in eq 104
is expressed as a sum of its Hermitian and anti-Hermitian
components

(WIPTY), (H = E)], [W) + (P|PTY, H)WY = 0 (106)
in which [...] and [...], denote the commutator and anticommu-
tator, respectively. For the CSE to be satisfied, both terms in
eq 106 must equal zero separately, defining the ACSE**~3%3% 3%
(also called the k-particle Brillouin conditions)

(W|PTY, HW) = 0 (107)
In contrast to the CSE, the ACSE only depends on the 1-, 2-, and
3-RDMs since the commutator of two tensors with rank m and n,
respectively, is a tensor of rank (m +n — 1I).
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2.3.2. Solution of the ACSE Equations. To solve the
ACSE for the 2-RDO and hence the energy, Mazziotti* 382
considers a sequence of unitary two-body transformations
applied to a reference wave function W(A), where the unitary
transformations are ordered according to a continuous time-like
variable A

W@+ €) = P W) (108)
where the operator
S2) = X 2s(A) Ty (109)
ij, k1

is restricted to be antihermitian (S' = —S) in order to ensure the
unitarity of the sequence of transformations. Inserting eq 108
into the definition of the ACSE in eq 107 and expanding the
exponentials up to first order in € yields

E(A + €) = E(2) + «WA)|[HSD)][P(2)) +
(110)

Taking the € —0 limit yields the following differential equation
for the energy

& = (W@, ()| W(A) (111)

and a similar equation for the evolution of the 2-RDM is obtained
when the Hamiltonian in the ACSE is replaced with the 2-RDO

dZDk) 210 &
a = (YOIFTE, SIWEA)) (112)

Inserting the definition of S(l) in eq 109 into eq 110 and
differentiating, the elements of %8 are chosen in order to mini-
mize the energy along the gradient

10E(A + €)

cos) ), CPAIET A

'S = -

2§=0
(113)

Although the differential eqs 111—113 formally employ the wave
function, they can be expressed in terms of the 1-, 2-, and
3-RDMs (because they all involve the commutator of two
rank-2 tensors). Provided there is a suitable initial guess for the
density matrices at A = 0, the differential equations are
propagated until either (i) the energy or (ii) the least-squares
error of the ACSE increases. Technically, the ACSE (the right-
hand side of eq 113) should vanish upon convergence;
however, due to the approximations related to the reconstruc-
tion of the 3-RDM (see below), the ACSE equations are
evolved until either the energy or the least-squares error norm
of the ACSE increases.

Note that eqs 111—113, in addition to the 2-RDM, also
depend on the 3-RDM. As such, the ACSE equations are
indeterminate. To remove this indeterminacy, the 3-RDM is
approximated with its cumulant expansion

pvn = 'Dj A D], A DY
+3(D}, —'Dj A 'D},) A 'DE + AT (114)

where A denotes the antisymmetrized tensor product, and the
cumulant (connected) part of the 3-RDM (*A) vanishes if all

three electrons are statistically independent. There are several
approximations to the connected part of the 3-RDM. The
simplest aggroximation, also known as the Valdemoro recon-
struction,® is to simply neglect the three-electron cumulant
(*A = 0). As argued in ref 383, this simple approximation yields
energies with sufficient accuracy. More elaborate reconstruction
functionals, such as the Nakatsuji—Yasuda®” and the Mazziotti
functional,>***%° can lead to numerical difficulties when solving
the ACSE since the elements of the connected 3-RDM can
become large when all six orbitals are in the active space3 ?
Because of these considerations, the ACSE neglects 3A when
treating multireference problems.>®

In applications to multireference problems, the initial guess
for the ACSE is generated from a CASSCF wave function. For
this reason, these methods may be considered multireference
methods. This limits the applicability of the ACSE to applica-
tions with small active spaces, but in principle this could be
circumvented by using one of the new methods (e.g., GCF,
DMRG, or the active-space variational RDM*?°~*** method)
to compute the initial density. Nonetheless, the working
assumptions in applying the ACSE to multireference pro-
blems are that (i) the reference (CASSCF) 2-RDM captures
the effects of static correlations, (ii) that unitary transforma-
tions among the active orbitals can be neglected, and (iii) the
two-body operator S(A) neglects the terms with more than
two virtual orbitals. These assumptions correspond to those of
other multireference methods. Some recent applications of
ACSE include geometry optlmlzatlons 405406 reaction barriers, "%
sigmatropic shifts,*” excited states,*'® open-shell systems, **
conical intersections.*'*

2.3.3. Canonical Transformation Theory. To incorporate
the effects of dynamic correlation on top of a multiconfigura-
tional reference wave function |1)y), the canonical transformation
theory of Yanai and Chan®"®*”" expresses the wave function
based on the unitary exponential ansatz

and

Wer) = efyy) (115)

When the antisymmetric excitation operator A contains at most
single- and double-replacement operators

A= ZA 1111 ausl)

i, $1

+ Y Arpalala,a, -

i1,i1,51,%

al aj agay,) (116)

that only rotate between the active—external and external —
external spaces,””® the method is denoted CTSD. The orbital
indices i and s in eq 116 denote arbitrary orbitals within the
active and external spaces. As long as the reference wave
function is size-consistent, the exponential parametriza-
tion of the wave functlon guarantees that CT is rigorously
size-consistent.>”® Application of the unitary operator to the
Hamiltonian

H = ¢ *He

=H + [HA] + -[[HA],A] +..

(117)

generates the effective CT Hamiltonian H. The excitation
operator amplitudes (A;' and A}; ®) in eq ] 116 are determined
by solving the generalized Brillouin condltlons * The energy is then
computed as the expectation value of this effective Hamiltonian with
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the reference wave function,

E = (po[H|yo) (118)

In the current form, the computation in eq 118 is just as
challenging as the original Schrodinger equation since, as can be
seen from the commutator expansion in eq 117, the CT
Hamiltonian contains, in addition to one- and two-electron
operators, also three-electron and hlgher rank operators. How-
ever, as noted by Yanai and Chan,*”® this complexity may be
eliminated by decomposing the three-body operators after each
commutator as in linearized CTSD (LCTSD)

When employln§ the generalized normal ordering of Mukherjee
and Kutzelnigg, 1344 the terms [H,A]l » only depend on one-
and two-body operators and the 1-, 2-, and 3-RDMs of the
reference wave function.*”® Unlike the energy defined in eq 118,
this approximation results in an energy that is no longer bounded
from below by the exact full-CI energy. As in the density-based
approaches, the dependence on the 3-RDM may be eliminated
via the cumulant theory, and the resulting approximate CT
Hamiltonian only depends on one- and two-electron terms. In
principle, the expansion still requires an infinite number of terms
to be computed; however, 8—10 terms are sufficient*'® for a
precision of 107 Ej,.

As discussed in more detail in ref 379, the performance of
single-reference LCTSD is expected to “perform intermediate
between linearized CCSD and the full CCSD theories” at a
computational scaling that is similar to SR-CCSD (n®, where n is
the number of orbitals). Note, however, that LCTSD yields
potential energy surfaces that are similar in accuracy to those
from other multireference approaches. The accuracy of CTSD
may be improved, while retaining the computational cost of
CCSD, by delajmg the operator decompositions for as
long as possible.” ® The resulting quadratic CTSD (QCTSD)

Hamiltonian
AR PN Toia an s
H =e"He' = H + [H)A]l,z + a“HrA]'A}l,z
1.~ a0 s A 1 A A
Jr?[[[H)A] A]l Z’A]l 2 Z[[[[H'A]’Ah,ziA]lA]l,z +

(120)

is more complex as it requires the decomposition of four-body
operators ([[H,A],A] 1,2 versus [H,A] 12 in LCTSD). Nonetheless,
the overall scaling of QCTSD with system size is the same as that
of LCTSD, and QCTSD is accurate to the same order in
perturbation theory as CCSD.*'°

Although the initial applications®”**”**'¢ have focused on
assessing the accuracy of LCTSD and QCTSD relative to
multireference approaches such as CASPT2, MR-CISD, MR-
ACPF, and MR-AQCC, more recent work toward develo ing
strongly contracted CTSD for eliminating intruder states,*'” in
conjunction with a reference wave function from DMRG,*'®
shows great promise. Since the computational cost of CTSD
does not depend on the number of determinants in the reference
wave function, the DMRG-CT method has been applied to
a variety of problems that are out of the reach of standard
multireference approaches: (i) the evaluation of total correlation
energies for conjugated polyenes (24>* active space),*'” (ii) the

isomerization of [Cu,0,]*" (32%* active space) 7 and (iii)
singlet—triplet gap of free base porphirin (24°° active space).*'>

2.4. Basis Extrapolation and R12 Methods

The quality and flexibility of the orbital basis set affects the
quality of the computed wave functions and molecular proper-
ties. Thus any inherent limitations in a particular orbital basis set
are reflected in the quality of the computed properties. There are
two common approaches to address orbital basis set limita-
tions: methods that are based on extrapolations and methods
that include explicit interelectronic interactions into the wave
function.

One of the important features of modern, generally con-
tracted, basm sets (e.g., the ANO*7% and the correlation-
consistent**® basis sets) is that they display systematic conver-
gence of the energy and other molecular properties. These
sequences of basis sets are often used to extrapolate a given
property to the complete basis set (CBS) limit for a given
method. These CBS limits may be used to obtain high-quality
results, to measure the inherent error in a given electronic
structure method, and also to assess the quality of the individual
calculations that are used in the extrapolation procedure.

The basis set extrapolation can be justified by the observation
that the correlation energy converges with the inverse third
power of the angular momentum in the helium atom*'® and in
other N-electron atoms.”° On the other hand, it is also known
that the uncorrelated energy (SCF) shows an exponential con-
vergence pattem,421 w2 e, it converges much faster. Extrapolation
schemes developed for SR theories use these facts and extra-
polate the SCF and correlated energies separately.***~**5*% For
the SCF energy an exponential equation

E(X) = E(CBS) + A exp(—BX) (121)

may be used, where X is the cardinal index (e.g, X = 2 for DZ,
X =3 for TZ, and so on). This requires energy values with three
different basis sets to determine the three parameters. For the
correlation energy an inverse cubic formula requiring two energy
values can be used**

E(X) = E(CBS) + AX?® (122)

Other formulas are also used, e.g., the mixed Gaussian expression
by Peterson et al.**®

E(X) = E(CBS) + Aexp(— (X —1))
+Bexp(— (n—1)%) (123)

In the preceding expressions E(CBS), A, B, and n are the
adjustable parameters that are fitted to the E(X) data points.
The apparent problem in MR calculations is that uncorrelated
and correlated energy components cannot easily be distin-
guished. First, MR calculations are often used in situations when
the one-determinant approximation fails; i.e., separating the
uncorrelated part is not possible. However, a separation of the
static (nondynamic) and the dynamic parts of the correlation
might be attempted. It is expected that the static part will
converge similarly to the SCF case, and the remaining part can
be extrapolated with a “dynamic electron correlation” expression.
In the case of excited states, even this distinction is problematic
since the “uncorrelated” excited state is often not defined. The
fundamental idea of separation of static and dynamic correlation
is therefore nontrivial. A practical separation can be defined as the
difference between the total and the reference energy. In case of a
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large CAS reference, however, particularly one that includes
extra-valence orbitals in the active space, the reference energy
would include already some portion of the dynamic correlation
energy, and the convergence with respect to the basis set size
might not be described well by the exponential formula. There-
fore there is no unique and unambiguous basis set extrapolation
recipe for MR calculations.

Several suggestions can be found in the literature to address
this problem. Petersson et al.**” observed that the convergence
pattern of the CAS energy is very similar to that of the UHF
energy, and they employ the UHF CBS limit to get the extra-
polated CAS energy. The advantage of this procedure is that the
larger basis set calculations are only performed at the UHF level
resulting in some saving in computer time. In a subsequent
paper**® a similar procedure was used to extrapolate the MR-
CISD energy; here the UHF-CCSD energy calculated with larger
basis sets are used to extrapolate the MR-CISD correlation
energy. Unfortunately if UHF fails to describe the system (e.g,
due to strong static correlation, or spin contamination, or for
excited-state wave functions), this approach is inappropriate.
Nevertheless, the procedure was successfully used to describe
several states of N,.**® Jiang and Wilson**® tested several
combinations of extrapolation formulas, including exponential
type extrapolations of the CAS energy and subsequent extra-
polations (again using different formulas) for the dynamic
correlation. They also considered the possibility of extrapolating
the total energy according to the eq 123 above. Earlier Muller
et al.®> successfully used the inverse cubic formula eq 122 to
extrapolate the total MR-CISD and MR-AQCC energy in a
systematic study of the excited states of diatomic molecules.
Extrapolation of the total energy was also 6performed successfully
in several studies of the ozone molecule®' % and to obtain a
high-quality potential energy surface for the F + H, reaction.'®
In a study on the vibrational states of LiH molecule, Holka
et al®*° defined the uncorrelated energy corresponding to 2
CAS and calculated it with large basis sets, essentially obtaining
the basis set limit. The correlation energy was defined as the total
MR-CISD energy (using a large CAS reference wave function)
less the 2> CAS uncorrelated energy, and this difference was
extrapolated with the cubic formula. Very accurate results could
be obtained this way (1—2 cm™ " accuracy for vibrational levels
up to dissociation), but large basis sets (up to 6Z) were required.
The drawback of this method is that it is difficult to generalize to
other systems in which the “static” correlation is not as well-
defined as in the case of a single-bond breaking.

For a given orbital basis, a sequence of progressively more
accurate electronic structure methods can be used to extrapolate
to the full-CI limit. With CI methods, such sequences typically
rely on orbital basis truncations that are based on natural orbital
occupations, on overall excitation level (CISD, CISDT, and
CISDTQ, etc.), or on numerical selection methods. These two
different extrapolations, orbital basis and method, can be used
together to estimate the combined CBS and full-CI limit. This is
the complete-CI limit which, after accounting for relativistic and
nonadiabatic effects, may be compared to experimental values.
The Gaussian Gx methods,*° the focal-point method,*' the
CEEIS method,'”'*° the Wx methods,*” and the HEAT
methods****** are popular examples of this combined extra-
polation approach, although these, except CEEIS, involve
typically single-reference CC and PT calculations. Recently
a new multireference extrapolation procedure has also been
introduced by Jiang and Wilson*** under the name MR-ccCA

(multireference analog of the correlation consistent compo-
site approach).

Three difficulties can arise with these extrapolations. The first
occurs with the CBS limit for a given electronic structure method.
If the wave function expansion or the energy expression is
insufficiently flexible to describe the property, then erratic or
unreliable results can be computed for the basis set sequence.
Typically this occurs when there are two or more qualitatively
different components of the property, and the different compo-
nents converge at different rates with basis set expansion. As one
or the other of these competing effects dominates within the
basis function sequence, erratic convergence to the CBS limit is
observed, making reliable extrapolations difficult. Examples of
this were observed in the bond length extrapolations in ref 369
for several of the single-reference methods; it was argued in these
cases that the additional wave function flexibility from the
increasing basis set size improves the description of the electron
correlation, which tends to shorten the computed bond lengths,
but it also reduces the artificial charge contamination of the SCF
reference function, which tends to lengthen the computed bond
lengths. MR expansions are inherently more flexible than SR
expansions, and such erratic convergence is less likely to
occur, or to be smaller in magnitude, for a MR sequence than for
an otherwise comparable SR sequence. In the bond length calcula-
tion example,*® the MCSCF reference space eliminates the
spurious charge contamination, leaving only the more well-behaved
and smoothly convergent dynamical correlation effects to be
described by the MRCI extrapolation sequence. However, even
with MR methods, extrapolations that begin with small basis sets
can be unreliable.

Another difficulty with extrapolation methods is that a parti-
cular sequence of electronic structure methods may not be
convergent for all basis sets. An example of this is the SR-MPn
sequence of energy calculations. For a small cc-pVDZ basis
expansion, the SR-MP#n sequence might converge smoothly to
a value, but for larger cc-pVTZ and cc-pVQZ basis sets, the SR-
MPr sequence can diverge. Olsen et al.** and Helgaker et al #
argue this divergence is often due to singularities for negative
values of the perturbation parameter which arise from the diftuse
functions of the larger basis sets. Negative values of the perturba-
tion parameter correspond to the nonphysical situation in which
electron interactions are attractive rather than repulsive, but
these nonphysical singularities adversely affect the mathematical
convergence properties of the SR-MP#n sequence. (These are
called back-door intruder states in Chapter 14 of ref 436.)
Variational MR methods are typically less susceptible to these
convergence issues than PT methods, but they can arise none-
theless. An example is the MR-AQCC calculation on O3 with a
small 2” reference space. cc-pVDZ calculations result in a
reasonably accurate PES near the equilibrium geometry, but
larger cc-pVTZ and cc-pVQZ basis sets result in inaccurate PESs
and in very slow convergence. Both effects are due to basis-
dependent intruder-state issues. These problems all disappear
with larger, more flexible, reference spaces.3’6

Finally the general difficulty with all basis extrapolation
methods is that the effort for each basis scales with the basis size
as O(n™), where X ranges from 4 for low-level methods (e.g., SCF
on small molecules), to S or 6 for higher accuracy electronic
structure methods (e.g., MCSCF, MRCI), up to the number of
electrons N for full-CI methods. The memory, storage, I/O, and
communication requirements for various methods also increase
with increasing basis size n. Thus the calculations required for the
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larger basis sets in the extrapolation sequence can become
expensive or, due to practical limitations, impossible.

The other general approach to addressing the orbital basis set
convergence issue is through the incorporation of explicit inter-
electron coordinates into the wave function or energy expres-
sion. This approach dates from the work of Hylleraas™” in 1928.
For the present discussion, it is the general formulation of
Kutzelnigg™® and Klopper*****° in terms of standard MO basis
sets that is most applicable. The details of the method are
discussed in the recent review by Klopper et al**' These
approaches are called R12 or F12 methods depending on the
specific form of the interelectronic interactions. This approach
was first applied to CI by Rohse et al.*** for benchmark full-CI
calculations on H, and H;". The formulation for general MRCI
expansions was given by Gdanitz"***** in 1993 using the
COLUMBUS codes. In both cases, the R12 terms were limited
only to the reference space, the remaining expansion terms were
treated in the normal CI or ACPF approach. The newest version
of this method is available within the AMICA program,*** and
some applications are presented in refs 446—449. Te-No*°
introduced an F12 extension to MR-MP2 method with internal
contraction that is apglicable to larger molecular systems.
Varganov and Martinez**' use geminal augmentation with the
MCSCF method, but their implementation is limited to two-
electron systems. A novel approach was introduced by Torheyden
and Valeev*> which allows the calculation of the R12 second-order
correction for any reference state for which 1-RDM and 2-RDM
are available. The formalism uses internal contractions to obtain
the geminal replacements, but it can be applied equally well to
uncontracted MR-CISD as was demonstrated in ref 452. A spin-
free version has recently been proposed by Kong and Valeev.**
This is a very promising development since it would allow
application of R12 methods into arbitrary electronic structure
methods such as the GCF, DMRG, and CT approaches discussed
in sections 2.1.5 and 2.3. Recently an ic-MR-CISD-F12 approach
has been presented by Shiozaki et al.****** In general, the R12
terms in these methods are designed primarily to address the
description of the Kato cusp associated with dynamical correla-
tion,*® while the underlying MCSCF and MRCI expansions
describe the valence and other strong correlation effects, e.g., due
to near-degeneracies and curve crossings. Thus the fundamental
flexibility and general advantages of MR methods are retained.

These R12 methods are incorporated within a standard MO
basis set expansion, and therefore they still have artifacts associated
with the finite basis set truncation. However, when combined
with basis extrapolation approaches, the convergence to the CBS
limit occurs much faster, and therefore explicit calculations only
with the smaller basis sets**" are required. Thus within the basis
extrapolation sequence, any increase in effort due to the R12
methodology is offset by the use of smaller orbital basis sets.

2.5. Analytic Gradients of Multireference Methods

In this section an overview of some of the general features of
MCSCF and MRCI analytic energy gradients is presented. A
more detailed and complete discussion is given in the review
article of ref 21. The gradient formalism for these MR methods
may be compared to those of various SR methods discussed in
the review article of Pulay.**” The CSF expansion coefficients for
MCSCF and MRCI wave functions are variationally determined,
and this allows the Hellmann—Feynman theorem, using second-
quantized conventions for the Hamiltonian operator, to be
exploited. The choice of orbitals for the MRCI expansion is

somewhat arbitrary because of redundant orbital rotation vari-
ables associated with the MCSCF expansion space, and in
certain situations the resolution of these rotations must be
accounted for when computing the MRCI energy gradient.
One of the challenges of analytic gradient methods for MR
expansions has been the development and implementation of
general efficient procedures that match the flexibility and cap-
ability of the wave functions themselves.

A formal approach that meets this challenge of generality and
efficiency is based on a sequence of successive geometry-depen-
dent orbital transformations in which the effects of individual
constraints or conditions imposed on the orbitals may be
considered individually.”"***" In the straightforward case,
there would be four orbital basis sets.

0(R) = (R) C(0) 124

125

126
127

(124)
(125)
(126)
(127)

R denotes the coordinates of the atom centers, or more generally
the basis function centers, within the molecule. The actual
coordinates that are used in a calculation may be, for example,
the Cartesian coordinates of the atom centers or some choice of
internal coordinates. The basis ¥(R) is the atom-centered AO
basis; as the atom centers move with the molecular geometry,
the associated basis functions move along with them. This AO
basis may be symmetry-adapted to the point group of the
molecule. The C(0) matrix contains the fully optimized and
resolved orbital coeflicients at the reference geometry denoted,
for notational convenience, R = 0. It is the analytic gradient at this
reference geometry that is of interest. The basis (p[CJ(R) is a
geometry-dependent basis that generally is orthonormal only at
R = 0. The symmetric positive-definite matrix SII(R) s the
orbital overlap matrix in the @/“/(R) basis, and it is used to
define*® the basis ¢'*/(R) which is orthonormal at all R. The
basis (p[K](R) is the energy-optimized orthonormal orbital basis
defined in terms of the skew-symmetric matrix K whose nonzero
elements correspond to the essential MCSCF orbital rotation
parameters. Finally, (p[Z](R) is the fully resolved orbital basis
defined in terms of the skew-symmetric matrix Z whose nonzero
elements correspond to the redundant MCSCF orbital rotation
parameters. The two sets of orbital rotation parameters, essential
and redundant, are disjointed in the sense that a nonzero K,,
element implies a zero Z,,; element, and a nonzero Z,,, element
implies a zero K,; element. With an appropriate ordering of the
MO basis functions, the Z matrix assumes a block-diagonal form
and the K matrix assumes a complementary block-off-diagonal
form (see Figure 1 in ref 21). It is this final orbital basis (p[ (R)
that is used to define the MRCI wave function at the reference
geometg. With this sequence of orbital transformations it is seen
that (p[ (0) = (p[S](O) = (p[K](O) = (p[z](O), but these orbital
bases are generally different at arbitrary R # 0. In this formula-
tion, the orbital bases @)(R) and ¢“'(R) are orthonormal
because the transformation matrices exp(K) and exp(Z) are
intrinsically orthogonal; thus no additional constraints need to be
satisfied, and no additional optimization variables, particularly in
the form of Lagrange multipliers, are introduced. In more general
situations, there might be several orbital optimization steps
involved in computing the orbitals for the final MRCI energy
and wave function. This successive orbital transformation
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approach may be generalized in a straightforward way to account
for any arbitrary sequence of orbital optimization steps.*"

The general approach to computing a particular analytic
energy gradient will be similar for all of the electronic structure
methods discussed in this section. The energy as a function of R
will be written in terms of the geometry-dependent one- and two-
electron integrals in the most appropriate orbital basis. This will
also involve the geometry-dependent density matrices, transition
density matrices, and various other combinations of these quantities
such as geometry-dependent Fock matrices. Expansion techniques
will be used to determine the first-order dependence of the
energy on the various geometry-dependent quantities at the
reference geometry R = 0. Finally, the transformation properties
of these quantities, consistent with eqs 124—127, will be used as
necessary to simplify the expressions, to isolate the geometry-
dependent factors from the geometry-independent factors, and
eventually to express the analytic energy gradient as simple
summations of the derivatives of the overlap integrals and the
one- and two-electron Hamiltonian integrals in the AO basis.

2.5.1. Single-State MCSCF Gradient. A summary of some
of the important features of the MCSCF gradient for a single
electronic state follows. These features will then form the
foundation for the discussion of the other wave functions. A trial
MCSCF wave function may be written in the @'J(R) orbital
basis as a generalization of eq 70.

[y (R)) = exp(K(R)) exp(P(R))|ref (R); [S])

The reference wave function |ref(R)) may be chosen to be either
a ground or an excited electronic state; a ground state would
correspond to the lowest Hamiltonian matrix eigenpair at R = 0,
whereas an excited state would correspond to a higher eigenpair.
The ordering of the states may, of course, change at various values of
R, so it is important for the formalism to remain general in this
respect. It is convenient to take |ref(R)) to be the optimized
MCSCF wave function at R = 0, and at displaced geometries to
be the wave function with the same normalized CSF expansion
coefficients, ||cngO)||2 = 1, but represented in the corresponding
orthonormal (p[s (R) orbital basis. This reference wave function
will be denoted |mc(0);[S]), and there is a corresponding reference
PES associated with this reference wave function defined as

(mc(0); [S][HI (R) [me(0); [S])
Z hE](R)(mc(O); [S]|E s |mec(0); [S])

(128)

E*(R)

£2 3 gl R)me(0): [5epgme(0); )
s

= Te(h(R)D"(0)) + > Tr(g I (R)A" 0)
(129)

The last expression in particular shows that all of the geometry
dependence of this reference energy surface derives from the
geometry dependence of the one- and two-electron integrals that
define the second-quantized Hamiltonian operator. The reduced
density matrices D"5)(0) and d"18(0) are geometry-indepen-
dent because (i) they depend on the geometry-independent
coupling coefficients and (ii) they depend on the fixed, reference-
geometry, CSF expansion coefficients ¢"(0). The above refer-
ence PES is never actually computed at arbitrary R; it is rather a
formal construct that is used to reveal how the various quantities
depend on the molecular displacements R.

138

The trial energy expectation value may then be written

= (YRR (R))
= (me(0); [s]] exp( — P(R)) exp( — K(R)) H(R)
xexp(K(R)) exp(P(R)))me(0); S])

= E*(R) + (k(R)" p(R)T)<£:1f)((::))>

Gorb, csf (R) k(R)
G, csf(R) ) (P(R)) *

=E*(R) + A(R)-f(R) + %MR)T G(R) A(R) +..

Etrial (K, p; R)

+ % (k®)" p®R)") ( ((;;l; : ((::))

(130)

which corresponds to eq 72 with the R-dependence denoted
explicitly. At any arbitrary R, the MCSCF wave function para-
meters A”°(R) are those that satisfy the variational conditions
AE"™(A(R);R)/dA = 0. This results in a coupled set of nonlinear
equations

0 = f™(R) + G™(R) A™(R) + O(A™(R)%).. (131)

that must be satisfied by the parameters A"“(R) at arbitrary R.
There is no closed-form solution to this equation. However, this
equation is sufficient to determine the corresponding Taylor
expansion of the geometry-dependent parameters A(R) relative
to the reference geometry R = 0 values. Differentiating eq 131
with respect to a displacement of a representative atomic center
coordinate denoted x, evaluation at the reference geometry, and
using the relation A™(0) = 0 give

A™(0)" = —G™(0)"" £"(0)" (132)

The superscript x denotes differentiation, and it is used to
identify quantities that depend on some displacement of the
molecular geometry. This gives the first-order change in the
MCSCEF orbitals and CSF expansion coefficients at the reference
geometry to the displacement along the coordinate direction
labeled by x. The MCSCEF energy at arbitrary R is given by eq 130
with the specific K™(R) and p™“(R) parameters determined
from eq 131. Differentiation of this energy expression with
respect to a geometry displacement and evaluation at R = 0
gives an element of the MCSCF analytic energy gradient

E™(0)* = E*(0)* + A(0)-£(0)* + A(0)*-f(0) + ...  (133)

= E*(0)" (134)

The truncation follows from the relations f(0) = 0 and 4(0) = 0.
This is an example of the Hellmann—Feynman theorem using
second-quantized conventions for the definition of the Hamilto-
nian operator: the first-order wave function does not contribute
to the single-state MCSCEF energy gradient. The MCSCEF energy
gradient may be written

E(0)" = E4(0)* = (me(0); [S]1(0)" me(0); ]}
— (0)" #7(0)" ¢"(0)
= Te(h(0)* D"(0)) + JTr(g(0)" 4"(0))
(135)

This last expression shows that the density matrices contain the
displacement-independent factors of the energy gradient
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elements, which are shared by all possible displacements x, and
the derivative integrals contain all of the displacement-dependent
factors for each displacement direction . If the energy gradient
were evaluated using this expression, the entire set of derivative
terms h*)(0)* and g"*1(0)* for up to 3N, om possible displace-
ment directions x would need to be computed. This would
require effort proportional to 3N,om. A more efficient approach
is to transform the gradient expression back to the original AO
basis. Using the sequence of orbital transformations eqs 124 and
125, the gradient component may be written as™'

E"(0)* = Tr(h¥(0)* D"¥(0)) + %Tr(gm (0)* d"%(0))

— Tr(s%(0)" F"%(0)) (136)
The AO density and Fock matrices are computed as
mely] me
Hv (0) Z C(O)‘Llp C(O)vq qu g (0)
Pq
Di(0) = X C(0),, C(0),, Dy (0)
Pq
a0 =Y €0),, C(0),, C(0);, C(0),, dI(0)
pqrs
(137)

The transformation of these arrays is similar to the one- and two-
electron integral transformation operation. The actual operation
counts differ because, in the typical situation, arrays are trans-
formed from the smaller occupied orbital basis to the larger
AOQ basis.

The final expression eq 136 is important because the two-
electron Hamiltonian integrals are very sparse in the atom-
centered AO basis. A particular two-electron repulsion integral
depends on, at most, only four atom centers, or 12 Cartesian
displacements, out of the 3N, total possible displacements.
Consequently, there are only about 12 times as many nonzero
AO derivative integrals as undifferentiated AO integrals. Further-
more, the computation of the AO derivatives by shells allows
reuse of various intermediate quantities, resulting in an even
more efficient overall procedure.*" By exploiting these features,
the trace operation may be computed in the AO basis with effort
that is formally independent of N, i.e., O(N2om) = O(1). This
simplification affects the number of arithmetic operations re-
quired to evaluate the energy gradient and the total amount of
memory and external storage space that is required for the
computation. Thus the analytic gradient procedure described
above is both more efficient and more accurate than a finite-
difference approach, and it has similar advantages when these
gradients are used to fit molecular potential energy surfaces,** to
optimize molecular geometries, or when they are used directly to
compute classical dynamical trajectories.*® In ref 369 molecular
geometry optimizations were performed for 20 molecules using
MCSCF wave functions and with a variety of orbital basis sets
and a wide range of CSF expansion spaces. The effort for the
MCSCEF gradient evaluations for these molecules required
between 8.0 and 84.4% of the total computational effort
(including integral evaluation and wave function optimization),
with a mean of 58.1%. These timings demonstrate that the
computational procedure presented above is very efficient, that
it is independent of N, and that it may be applied to any
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molecule for which the MCSCF wave function optimization itself
is practical.

2.5.2. State-Averaged MCSCF Gradient. For state-aver-
aged calculations, the trial wave function parametrization of
eqs 63—70 is generalized as

P(R) = %PI’(R) (138)
PI(R) = [p/(R))me(0)] = me (0))¢/(R)| (139)
P (R)) = Y pl,(R)[m; [s]) (140)

In analogy to the single-state case, the reference states |mc'(0))
are defined with the (p[s](R) orbitals and with the fixed CSF
coefficients ¢/(0) corresponding to the jth eigenpair at R = 0. This
generalization allows an averaged trial energy to be written

Etrial(k, plzNav; R) _

Nay
E ij;rlal (k, pI:Nav : R)
j

= Y wi(mc'(0); [S]| exp( — P) exp( — K)H exp(K)(P)|m¢ (0); S])

_ for
Eref(R) + (kT Pl:Nﬂv,T ) (flif\zv )

csf

~ 1:N.y
1 T ) Gorb, orb Gorh, osf k
+ E( k PI'N“'T ) Gl:NaV Gl:NaV 1:N,y +.
csf, orb csf, csf P

(141)

The vector _pl’N“(R) corresponds to the concatenation of the
individual p/(R) vectors for each of the states included in the state
average. The state-averaged quantities

Nay
E(R) = Y wiE¥(R) (142)
j
_ Ny
forb(R> - Z wjforb(R) <143)
_ ! Nay .
Gorb,orb(R) = Z WjG]()rb,orb (144)

J

are defined in terms of their state-specific components, but they are
most efficiently computed using state-averaged density matrices.**®
The first-order equation for the orbital and CSF response in terms of
these augmented gradient and Hessian matrices is

KOy ) _
p (0 )

_ . -1 _

GOl’b; orb (0) Gc;l);‘{a\,’aZsf (0) forb (O)x ( 145)
: : Ny x

Gisgirb (0) Gisﬁ,v?sf(O) £50(0)

Differentiation of the state-averaged trial energy with the
optimal wave function parameters with respect to a displace-
ment, and evaluation at R = 0, gives, in principle, the state-
averaged energy gradient E"“(0)" analogous to eq 135, in terms
of the state-averaged density matrices. However, it is not the
gradient of the state-averaged E™(R) that is of interest; it is rather
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the gradients of the individual states that are important. It is
the energy gradients of the individual states that determine, for
example, the classical trajectories on these PESs. This gradient is
given by substituting the k(0)* and p/(0)* for a particular state
into the state-specific energy expression, eq 130. After truncation,
this gives

EP(0)" = E¥1(0)" + k(0)"-£,,(0) (146)
In contrast to eq 134, the generally nonzero state-specific orbital
gradient terms £/,,(0) are seen to contribute to the energy
gradient expression through the first-order change in the orbitals.
The f.(0) terms are zero, and the p/(0)” response terms do not
contribute in eq 146 because of the Hellmann—Feynman rela-
tion. The next step is to express this contribution to the gradient
in a form that allows for efficient evaluation. To this end, eq 146 is
written in the slightly modified form

%”mv-ﬁ“mﬁ«+(M@%?ﬁ“%@%ﬁ(?ﬁﬁ?)

(147)
and eq 145 is used to give the following sequence of
identities2! 458459463 464

EP(0)*= Ef(0)" — (Fonn(0)™", £ (0)")
Gorb‘orb(o) Girllyacvsf( ) f}mb( )
Gefion(0)  Gf(0) )\ 07
_ (0
— B+ Fl0 0N )
j cs| }'csf av( )
o (148)
= E°(0)" + fon(0)" lorb( )
+ Z fcsf x csf ) (149)

As written, this expression for the energy gradient would
require the computation of the fo.,(0)* and ff(0)* vectors
for all 3N, possible displacements. However, the density
matrices?"*?

D;’;’ E Z ﬂ’csf <m|EP‘1 + ‘Z|mck(0)>

= 1 Nesg Nav k,j k
dlp;qrs _E Z %’l{céf( )m<m|epqrs + €qprs + €pqsr + eqpsr‘mc (O)>
DY = —{D"(0)sA} AV =—{d"(0):A}  (150)

may be used to write the gradient in the same general form as the
single-state expression

WW=ﬂwwm+m+W»
+Te(g0)*(@ + & + &%)
= Te(w (0)* Do) + %Tr(g[s](o)xdj,total)
(151)

All of the displacement dependence occurs within the Hamilto-
nian integrals, and the effective density matrices D***** and "
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are computed only from displacement-independent quantities.
The analytic energy gradient can be computed in the atom-
centered AO basis using the same sequence of transformations as
in the single-state case.

E/(0)" = Tr(h¥(0)* D"**'%(0))

4 %Tr(gm (O)x d;', total[y] (0)) _ TI'(SM (O)x ij total[y] (0))

(152)

As with the single-state wave function optimization case, this
allows the energy gradient for each state j within the state-
averaging procedure to be computed with effort that is formally
independent of N,om. The additional effort corresponding to
eqs 148—151 is comparable to that of a single iteration of the
state-averaged MCSCF energy optimization procedure. Thus, if
the state-averaged wave functions and energy can be computed,
then it is also practical to compute the energy gradients for the
states of interest.

2.5.3. MRCI Gradient. For the MRCI energy, the CSF
expansion coefficients are variationally optimized, which means
that the eigenvalue equation

HY(R) J(R) = E/(R) d(R) (153)
is satisfied at all R. Differentiating this expression with
respect to an atomic center displacement and evaluation at
R = 0 results in

ES(0)" = d(0)" HZ(0)* ¢(0)
= {c(0); [Z}|H[Z](0)x\c?(0); 2])

¥ m; [Z)[HP ()]s [Z])

=340

:an®ﬁwM@>+§w¥mf&@w»
(154)

with the wave function normalization IIc/(0)ll, = 1. With regard
to the MCSCEF energy gradient expression in eq 135, the first-
order CI wave function response ¢/(0)* does not contribute to
the energy gradient, and the Hellmann—Feynman theorem is
seen to be satisfied for the CI energy gradient. In order to
avoid the effort of constructing the derivative integrals in
the @“!(R) basis, the orbital transformation sequence in
eqs 124—127 and the commutator expansion of the Hamiltonian
operator allows the CI energy gradient to be written in the
¢ (R) basis.

Ef'(0)" = (e (0); [S]|H® (0)" + [H(0), K(0)']

+ [H(0), 2(0))|c# (0); [S]) (155)
= (i (0); [S]|H" (0)"|c#(0); [$])
+K"(0)" €5, (0) + 2(0)* -£5(0) (156)

The first two terms of eq 156 are of the type previously
considered in eqs 146—152 for the state-averaged MCSCF
energy gradient, except here, the CI density matrices and CI
orbital rotation gradient vector elements are used rather than
MCSCEF density and gradient elements. In general, the £(0)
orbital rotation gradient vector is nonzero because the orbitals
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are optimized for the MCSCF expansion, not for the CI
expansion.

The last term is a new type of gradient contribution that
derives from the orbital resolution of the MCSCF wave function.
The last term contributes to the gradient only when the
combination z2"(0), and f"“(0),, are both nonzero for some
particular orbital rotation pair indexed by (pq). As discussed in
section 2.2, the Z™ matrix assumes a block-diagonal form with
the appropriate choice of orbital ordering, and it has nonzero
elements only for orbital rotations for which the MCSCF energy
is invariant. Thus, a particular f"“(0),, element can contribute to
only one of the last two terms in eq 156; it cannot contribute to
both. Due to the variational determination of the CI expansion
coeflicients, however, the elements of the CI orbital gradient
fj’Ci(O)pq are zero for orbital rotations that are redundant in the CI
wave function.”' This eliminates such gradient contributions for
large classes of CI expansion spaces. For example, if the CI
expansion space has exactly the same invariant orbital subspaces
as the MCSCEF reference expansion, which is a common occur-
rence, then the last term in eq 156 cannot contribute to the
energy gradient, and it may be ignored. Thus, the only remaining
contributions to the last term in eq 156 are the orbital rotations
that are redundant in the MCSCF expansion (nonzero Z,
zero Ky) but are essential in the CI expansion space (nonzero
7(0),4). There are three common situations for which this
occurs. The first, and probably most common, is the frozen core
situation which occurs when a proper subset of the MCSCF
inactive orbitals is constrained to be doubly occupied in the CI
expansion CSFs. The CI wave function, energy, and therefore the
gradient then depend on exactly which of those orbitals are
frozen from this set and which are correlated. The typical orbital
resolution consists of diagonalizing the diagonal subblock of an
MCSCEF Fock matrix within the MCSCF inactive orbital space.
The orbitals associated with the lowest eigenvalues are frozen in
the CI expansion, and the remaining orbitals are allowed to have
various occupations. Some orbital basis sets are designed to
describe well the core orbitals but are not designed to describe
well the dynamical correlation of those core electrons, and wave
functions expanded with these types of AO basis sets should have
their core orbitals frozen in any post-SCF type of calculation.*"

A second common situation occurs with frozen virtual orbitals
in which there are very high-lying MCSCEF virtual orbitals that
would contribute only negligibly to the CI wave function. It is
typical in this case to diagonalize the diagonal subblock of an
MCSCF Fock matrix and delete the MOs associated with the
highest eigenvalues. This is formally equivalent to constraining
those orbitals to be unoccupied in all CSFs within the CI
expansion, but by removing the orbitals entirely from the MO
basis, the overall cost of the CI calculation is reduced. The
existence of such high-lying virtual orbitals also depends on the
choice of AO basis sets. Most modern, generally contracted,*®
AO basis sets, e.g., the correlation-consistent basis sets of
Dunning*®® or the ANO approach of Almlof and Taylor,**”*¢*
are designed so that these types of molecular orbitals do not
appear. It is primarily the older-style AO basis sets defined with
segmented contractions that suffer from this artifact, or also
certain benchmark calculations that are sometimes done in the
primitive uncontracted Gaussian basis.

A third, perhaps less common, situation occurs when an active
orbital in the MCSCF expansion becomes nearly doubly occupied
or when an active MCSCF orbital occupation becomes almost
zero. In these cases, the subsequent CI expansion is sometimes
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constructed that treats this orbital as if it were an MCSCF
inactive orbital or an MCSCF virtual orbital. This might be done
in order to reduce the CI expansion length, but it might also be
done, for example, to eliminate some kind of convergence
problem associated with intruder states in the expansion (e.g,
caused by configurations with occupied MCSCEF virtual orbitals
that have higher occupations or lower energies than reference
configurations involving MCSCF active orbitals). In these situa-
tions, the orbitals are typically resolved by diagonalizing either
the diagonal subblock of an active-orbital Fock matrix or the
diagonal subblock of the MCSCF 1-RDM (i.e., natural orbital
resolution). The formalism has been developed generally to
allow various other orbital resolution approaches, but, practically
speaking, these other possibilities are less common. For example,
the resolution based on successive diagonalizations of the CI
1-RDM, the iterative natural orbital approach,' which was once a
fairly common technique, is now used rarely. The orbital resolu-
tions discussed above may be combined in a very flexible and
general manner. Different invariant orbital subspaces may be
treated separately and resolved in different ways, and the
corresponding effective operators and density matrices are
computed accordingly. A more complete discussion of the orbital
resolution effects for various combinations of reference and MRCI
expansion spaces may be found in the review article in ref 21.

Ultimately, the last term in eq 154, involving z"°(0), may be
cast into an expression similar to eq 147. From there it is
straightforward to separate the displacement-dependent terms
(which carry the coordinate x superscript in these equations)
from the displacement-independent terms and to arrive at the
final equation for the gradient in terms of the sparse derivative
integrals in the AO basis.

me(0VF — Te(hld (0)F Ty totalld] L (oY girtotall]
E[(0)" = Tr(h*(0)" DX**¥(0)) + JTr(g*(0)" d"**(0))

— Tr(s¥(0)* Bl (0)) (157)

The total effort to construct the gradient vector is dominated,
particularly for large CI expansions, by the effort to construct the
CI reduced density matrices D**(0) and d”(0). This requires
roughly the same effort as that of a single Hamiltonian matrix—
vector product operation during the iterative solution of the
eigenvalue equation at the reference geometry. A consequence of
this is that, unlike most other electronic structure methods, the
CI energy gradient requires typically less effort than the compu-
tation of the CI wave function and energy itself. The above
gradient formulation also aPplies to MR-ACPF and MR-
AQCC energy expressions.”" For the 20 molecules studied
in ref 369, the effort for the MRCI and MR-AQCC gradient
evaluations required between 2.5 and 52.2% of the total
computational effort, with a mean of 9.9% over the entire
set of molecules and basis sets. This demonstrates that the
computational procedure outlined above is very efficient, that
it is independent of N, and that it may be applied to any
molecule for which the CI wave function optimization itself is
practical.

2.6. Nonadiabatic Coupling for Multireference Wave
Functions

The formalism and application of nonadiabatic coupling using
multireference wave functions have been reviewed recently by
Barbatti et al.**> Some of the important features of this overall
approach are summarized here. The basic problem in dynamics
simulations of molecules is to solve the time-dependent
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Schrodinger equation for the molecular system
ol
(iha — H(r, R)) Y(r,R,t) =0 (158)

This molecular Hamiltonian operator includes both nuclear R
and electronic r coordinates, H(r,R) = T"“C(R) + Hr;R).
T™(R) is the nuclear kinetic energy, and H® !(;R) includes
(cf. eq 7) the electronic kinetic energy, the electron—nuclear
attraction, the electron—electron repulsion, and, by convention,
also the nuclear—nuclear repulsion. The total wave function can
be written as a Born expansion (see, e.g., ref 469)

PR 1) = ¥ ¥ (R,1) Wl (r; R) (159)
j
In this expansion, l//fl(r;R) is the usual clamped-nucleus electro-
nic wave function for electronic state j, evaluated at the nuclear
configuration R. Equation 159 itself is not an approximation, but
truncation of the summation to a limited number of interacting
states is a practical necessity. Substltutmg eq 159 into eq 1S58,
multiplying from the left by 9§ '(5;R)*, and integrating over the
electronic coordinates gives
L 0
(lh = Tnuc) quuc + Z (
ot ,.

_Hlk + thjk'V + G,-k)llfj‘.‘““ =0

(160)

with
Hi(R) = (v} [H|y), (161)
Gi(R) = (| ™|y}, (162)
FiL(R) = (' [Vl 9o (163)
Vi = %Vm (164)

The index m ranges over the nuclear centers, each with mass M,,,.
Reference 365 discusses various methods in which eq 160 is
approximated and solved in order to determine chemical reaction
dynamics. The quantities Hy, Gj, and Fﬁ’( together determine
how, for example, a quantum wave packet transfers its amplitude
among the various electronic states during a chemical reaction. In
the adiabatic representation Hy(R) = Vi(R)0j, the electronic
energy Vi(R) assumes the role of a potential energy for the
nuclear motion, and the kinetic energy and velocity-dependent
terms determine the nonadiabatic coupling among the various
electronic states. Alternatively, in the diabatic representation
the electronic states are transformed among themselves in order
to eliminate the kinetic energy and velocity-dependent coupling
in eq 160, and it is the off-diagonal Hj; elements in this diabatic
basis that determine the nonadiabatic coupling. In either case, the
important electronic states are first computed in order to form
the basis states for eq 159, and the coupling elements in this basis
must be evaluated according to eqs 160—164. This section
focuses on the nonadiabatic coupling vector elements Fj(R).
This is a vector of length 3N,om, and an individual element of this
vector

Fe(R)* = <w;1<r; R)

s R>> (165)

r

determines the coupling between electronic states j and k at the
molecular geometry R. Expansion of the electronic wave func-
tions 1n a CSF basis in the fully optimized and resolved orbital
basis (p (R) in eq 127 allows the wave function derivative to be
written

2D = % AR [2])

=% (B4 Intr ) + 3 @)L 2))
(166)

The CSF expansion in eq 166 can be either an MCSCF expan-
sion or a general MRCI expansion, with the orbitals optimized for
either single-state MCSCF or state-averaged MCSCF energies.
The following equations are the same in any case. Equation 166
allows the nonadiabatic coupling element to be written as two
contributions

fiR)T = fiR)" +

with

+ [T R)* (167)

HR" = 3R () )l (R 2D

= J(R)-F(R)" (168)
SR) = Y d(R) ER)(m(R; [2])[XIa(R: [Z)))  (169)

with
y Xgl(R)qu
P9
(170)

¥4 8 ¥4
XR) = [ ofl(mir) Lol (rr) ar

These two contributions to the nonadiabatic coupling element
are examined separately. Differentiating eq 153 with respect to a
coordinate and evaluation at R = 0 gives an expression for the
first-order response of the CSF expansion coeflicients to a
perturbation

(H7(0) — E{(0)1)¢(0)"
= — (HY(0)" ~ E{(0)'1)"(0) (171)
Multiplication from the left by ¢(0)" results in

fi = (Bi(0) — E(0)'d(0)" H(0)" &(0)

~ (5:00) - 5(0) " (Teh (0" D(0) + JTe(g 0" (0
(172)

= (B (0) — E;(0) " (Tr(w (0)* D*(0))
+%Tr(g[s] (0)* d~(0)) + K™ (0)*-£4(0) + z'"“(O)"-f’k‘“i(O))
(173)
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Using the variational nature of J(R) in this manner is analogous
to the Hellmann—Feynmann theorem for ex;pectation values in
that it avoids the explicit computation of ¢*(0)* in eq 171; if
computed, this would be relatively expensive, and also the effort
would be proportional to N,iom. Equation 173 is analogous to
eq 156, but it uses the symmetrized transition density matrices
D*(0) and d™(0) in place of the state-specific CI density
matrices in the trace expressions and in the effective orbital
gradient vectors £°(0). As with the MCSCF and CI gradients
discussed in the previous section, these density matrices are
the displacement-independent factors, whereas the derivative
integrals are the displacement-dependent factors in this ex-
pression. The expression in eq 173 can be transformed to the
AO basis using the same sequence of steps as in the MCSCF
and CI gradients, but with the effective orbital gradient,
Fock matrices, and all other quantities written in terms of
the symmetric transition density matrices rather than the
state-specific density matrices in the various orbital basis
sets. Before considering this transformation further, the
other contribution to the nonadiabatic coupling element is
examined.

The ff;ff(R)x coupling of eq 169 may be written in the (p[Z](R)
orbital basis at R = 0 as

) = T XKei(0) Epglef (0)) (174)
pq

The relation 0 = S22(0)* = X12(0) + X12(0) shows that the

. . [Z](g)q Pd . g esfy\x
orbital matrix X is skew-symmetric. This allows the £;°(0)
coupling to be written in terms of the skew-symmetric CI one-
particle density

csf x
i (0)

3, LX20)6 0y — Eylet(0)
pq

p% x!4(0) D!)*(0)

= Tr(x%(0) D (0)) (175)

Using eqs 124—127 and evaluation at R = 0 give

1 x mc x me x
XE(O) = XIEZ](O)—ESI[,‘;](O) + K (O)pq +Z (O)P‘i

~(x9(0) — x[%(0)) + K™ (0);, + Z"(0)3,

(176)

Because of the disjoint partitioning of the MCSCF essential and
redundant orbital rotation elements, only one of the last two
terms in eq 176 can be nonzero for a given orbital index pair (pq).
Equation 175 can then be written as

8 (0)"

+ Tr(K™(0)* DO*(0)) + Tr(Z™(0)* DT*(0))

= Tr(X'%(0) DV*(0)) + K™ (0)"-£1y (0)
+2"(0)" £y, (0)

T+(X((0) DO (0))

(177)

143

with fgﬁf)(O)(pq) = ZDE;)jk(O). Upon comparing eq 177 with
eq 173, the common factors can be combined to give

fi(0)" = fi(0)" + £ (0)" = Tr(X'/(0) D¥(0))

+ (B(0) — B (0) " (Te(ul¥ (0)* D7 0))

+Tr(g(0)* #7)0))) + (K" (0)"
+27(0)")- (B(0) — B}(0))'4(0) + £°(0))
= Te(X(0) D(0)) + Te(h (0)* D4 (0))

1 ; i e
+Te(g7(0)" @<(0)) + K™(0)"+£,37(0)

+2"(0)*-£5 (0)

orb

(178)

where the effective density matrices and orbital gradient vector
include the CI energy-difference factors as appropriate. The
transformation steps of eqs 146—152 may be applied to trans-
form this expression to the AO basis in which the derivative
integral sparseness may be exploited.

fu(0)* = Tr(h (o) DH*1(0)) + Tr(g (o) @4 (0))

— Tr(sW(0)* Fould (0)) + Tr(x¥(0)* DO (0))
(179)

Given the symmetric transition density matrices and effective
orbital gradient vectors, the steps of the analytic energy gradient
procedure may be applied, and the contributions from the first
three terms in eq 179 may be computed in a straightforward
manner. The last term in eq 179 is unique to the nonadiabatic
coupling element. However, it involves only the skew-symmetric
component of the one-particle transition CI density matrix,
which requires an insignificant additional effort to compute along
with the symmetric component which is used in the first terms.
The above procedure may be applied to both MCSCF and
general MRCI wave functions. As a practical matter, only the
states with the largest coupling are included in the electronic
basis. These states are the ones that are nearly degenerate and
for which the energy difference factors in eq 178 have the largest
magnitudes.

The effort required for all 3N, components x of the
nonadiabatic coupling vector for MRCI wave functions is almost
exactly the same as that required for the computation of a single
energy gradient vector, which in turn is typically only a small
fraction of the effort required for the energy and wave function
optimization steps. Thus, for all practical purposes, if the wave
functions and energies can be optimized for the states of interest,
then the energy gradient vectors and the nonadiabatic coupling
vectors can also be computed.

2.7. Relativistic Effects and Spin-Orbit Interaction

The accurate quantum-chemical treatment of molecules con-
taining heavy atoms must account for relativistic effects to
describe their properties. See, e.g., refs 470—472 for a general
discussion of relativistic effects. Relativistic electrons whose
energy is a sizable fraction of the rest mass (m.c*) will have less
kinetic energy than their nonrelativistic counterparts (p*/2m,).
Thus, the strong Coulomb interaction with the nuclei results in a
contraction of the (nonrelativistic) orbitals close to the nuclei,
which primarily affects the s and p orbitals, and, to lesser extent,
the higher angular momentum orbitals. The more efficient
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screening of the nuclear charge due to the contraction of the core
orbitals typically causes the outer valence d and f orbitals to
expand.

Spin-orbit coupling lifts the degeneracy of atomic orbitals
belonging to the same [ quantum number, thereby splitting the
energy levels of the nonrelativistic atomic states. This introduces
irregularities of the atomic properties in the periodic table. A
good example is the anomalies of gold.*’* Especially for atoms
with a multitude of low-lying (degenerate and quasidegenerate)
electronic states such as actinides, spin-orbit coupling results in
a high density of states in the vicinity of the electronic ground
state. In fact, due to the coupling between electron correlation
and relativistic effects, it is frequently difficult to unambiguously
assign the ground state on theoretical grounds as illustrated by
the dimers of actinides.*’* Hence, the coupling of electron-
correlation and relativistic effects is in general best described
using multireference methods. Since spin-orbit splitting may be
large in free atoms but is usually quenched in the molecule, bond
energies are strongly affected. The classical example is T1, where
spin-orbit coupling reduces the dissociation energy from 1.05 to
0.43 eV.*’® The importance of relativistic effects for molecular
properties was pioneered by Pyykkd and Desclaux*’®~*"® and
subsequently explored by many research groups (see, e.g., refs
471, 479 480, and 566).

2.7.1. Relativistic Hamiltonians. The starting point for
almost all relativistic Hamiltonians for quantum chemistry is
the Dirac equation, the relativistic quantum mechanical descrip-
tion of a one-electron system in an external scalar potential V.
The Dirac equation with the Hamiltonian Hp, shifted by —m,c%,
in position space representation is given by

HpW = (ca-p + (B—1)m,* + V]¥ = EW (180)

The eigenfunction W is a four-component vector containing two
“large” and two “small” components W" and W¥, respectively.

pl
1
L L
y = lps = lpé (181)
by ‘Pé
w

The large and small components, respectively, originate from the
electronic and positronic degrees of freedom. In the nonrelati-
vistic limit c—co the small components vanish while the large
components correspond to the nonrelativistic wave functions for
a and f3 electron spin. p is the familiar momentum vector and & is
a three-dimensional vector. Together with f§ its components «,,
@, and @ constitute the four Dirac matrices

0 0 0 +1 0 0 0 —i
o0 410 o 0o +io
“=1o 410 o “%=1lo —io o
+10 0 0 i 0 0 0
(182)
0 0 41 0 Y10 0 0
o 0 0 -1 o 410 o0
=111 0 o0 o B=1o0 o -1 0
0 -10 0 o 0 0 -1
(183)

The spectrum of the Dirac equation contains a negative
(—00,—2m,c*) and a positive (0,+00) continuum of scattering
type solutions along with the discrete spectrum of eigenstates in
between. The off-diagonal term in eq 180, c¢-p, introduces a
coupling between the small and the large components. W and
WS are related to each other by the (exact) kinetic balance
condition.**"*** This causes the basis set of the small component
to be about twice the size of that for the large component. In the
physical vacuum the negative continuum is completely filled by
electrons while all other states are unoccupied.

There is no unique derivation of a molecular many-electron
analogue to the Dirac equation. Most commonly, the Dirac—
Coulomb, Hp, and the Dirac—Coulomb—Breit Hamiltonian,
Hpcp, are used in practice, where the Breit term, derived by
perturbation theory within the framework of QED, is taken in the
frequency-independent form**>~*** (in atomic units)

aj-ak (aj-rjk)(ak-rjk)
erk 2r}'k3

Hpcp = Hpc — ), (185)

j>k

Within the algebraic approximation the presence of a negative
energy continuum results in the tendency of variational solutions
to “collapse”. This continuum dissolution problem is character-
istic for a Hamiltonian whose spectrum is not bounded from
below. With finite GTO basis set expansions, however, there is
not necessarily sufficient flexibility for the collapse into the
negative continuum to be observed. Yet lacking a bounded
Hamiltonian, computed energies and wave functions do not
necessarily correspond to the desired bounded fermion states.
To circumvent this problem, it is necessary to construct a basis
that distinguishes between positron and electron states. Thus,
the first step is the construction of a four-spinor basis by
computing the eigenvalues of a simplified independent particle
Hamiltonian Hy and classifying them into positronic and elec-
tronic spinors. This information can subsequently be used to
constrain the wave function optimization to the interaction of
electron states only, since positronic excitations and pair-creation
processes are usually of no interest. The no-pair Hamiltonian
depends on the choice of H, used to define the four-spinor basis
because it is not invariant to rotations between positronic and
electronic spinors (vacuum polarization).

Within the fully relativistic four-component formalism, Dirac**®
and Kramers restricted Dirac—Hartree—Fock SCF calculations
furnish the necessary four-spinor basis. As already mentioned,
the kinetic balance condition defines a relation between the basis
sets for the small and large components. While primitive basis
sets are best suited to ensure the kinetic balance condition,
contracted basis sets reduce the computational costs substan-
tially. Thus, to generate contracted basis sets, the atomic balance
procedure has been proposed.*” Here the contraction coeffi-
cients are derived from the spinor coeflicients of atomic DHF
calculations with kinetically balanced primitive basis sets, thereby
assuming that core regions are not affected by bond formation.
To retain sufficient flexibility to describe the different radial
character of the I £ 1/2 spinors, the size of the contracted basis
essentially doubles. Similar to nonrelativistic Hartree—Fock, the
energy of a single determinant is minimized with respect to
rotations between occupied and virtual electron spinors plus the
constraint that the energy should be maximized for rotations
between electron and positron spinors.**® The formalism can be
extended to MCSCE.** The optimized four-spinor bases are
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subsequently used for more accurate electron correlation treat-
ments. Due to the integration over four spinors, the computa-
tional resource and memory requirements are substantially
higher. There are 16 times as many complex two-electron
integrals compared to nonrelativistic calculations, in addition
to the need for large primitive basis sets for a sufficiently flexible
description of the relativistic wave function. Hence, much effort
has been devoted to develop a hierarchy of approximations to the
four-component DCB Hamiltonian.

Two-component approaches can be derived by removing the
small component of the four spinors. Elimination techniques
exploit the fact that, for electronic solutlons, the W is suppressed
by a factor of 1/(2m,c) with respect to W". Zero- and first-order
regular approximations*® (ZORA, FORA) and the method of
normalized elimination of the small component®™' (NESC)
belong to this group of approaches.

Alternatively, transformation techniques aim at a unitary trans-
formation U of the Dirac Hamiltonian to block-diagonal form such
that W* and W" (in an eigenspinor basis of Hp,) are decoupled

i he 0
H = UHpU' = (0+ h_) (186)

P=yw = (%) (187)

For electronic solutions, W° = 0, the upper-left 2 x 2 block (i,) only

is retained. The generalized Douglas—Kroll transforma-
L 492 . . .

tion™ "~ employs a sequence of unitary transformations successively

eliminating the off-diagonal 2 X 2 block in orders of the external
potential.

H = ..0LUUHpUUIU}... = ¥ W (188)
k=0
) st + Vsd 0
- Z < k k sf sd ) (189)
=0\ 0 Vie + V2

The Douglas—Kroll method yields variationally stable, well-
defined expressions and allows for systematic improvement of
the approximation.*”> H is well-defined only in momentum
space, and the operators contain only even powers of momen-
tum. The (scalar) DKH approximation is applied to the one-
electron operators only, with spin-dependent terms v dis-
carded. Most conveniently, the modified kinetic energy and
electron—nuclear attraction integrals are evaluated in the basis
of the eigenvalues of the kinetic energy matrix and subsequently
transformed to position space.*”> In an incomplete basis, this
amounts to an additional approximation. From the computa-
tional point of view, this method is very attractive, as it combines
well with the entire existing machinery of nonrelativistic quan-
tum chemistry. Restricting the scalar DKH transformation to the
one-electron part neglects a renormalized two-electron Darwin
term for which the integrals should be small.*”*

The Breit—Pauli Hamiltonian*** incorporates spin-orbit cou-
pling in the reduced basis of the large component, and the spin-
orbit component is given by

Z 1
HBPSO[ Als} —(rp X p;)(si + 2s
az ; r]A ( ]) ]-#Zkrjks(l P]) ( '] k)

(190)

Zy

o “(s; + 2s)  (191)

1
= az{ ]z: (] s})] — ]-;krj? Lk
= Y HY(j) + %HSO%', k) (192)

where « is the fine-structure constant. The first term is the spin-
orbit interaction, while the second term is denoted the spin-
other-orbit interaction. Including the Breit interaction in the
DKH transformation up to second order in V, a relativistically
corrected no-pair Hamiltonian can be derived whose spin-
dependent part is of the same form as H°"*° amended by
kinematic bracketing factors.** The nonvanishing matrix ele-
ments of the spin-orbit operator for a spin-orbital excitation are
given by

HP = {p;(D)|H*|o,(1))

+5 X mloy(1) o210 (1,2)0,(1) 0(2))

k
—{9,(1) @, (2)|H*°(1,2)] 9, (1) ,(2))
— (1) 9,2)[H°(1,2) |0, (1) 9 (2))]  (193)

where n; denotes the occupancy of orbital k. To reduce the
computational effort, the two-electron part contributes through
fixed predefined average atomic densities, and, due to the short-
range property of the spin-orblt two-electron operator, only
one-center terms are retained.*”> More recently, also the one-
electron integrals are restricted to one-center integrals.*’ ® The
dependence on the choice of the atomic densities and the neglect
of the multicenter spin-orbit integrals appears to be small.

In the above, all-electron approximations to the fully relativis-
tic treatment have been discussed. Further reduction of the
computational effort and the complexity of the approach can
be achieved by use of effective valence electron Hamiltonians
which include relativistic effects solely by means of suitably
parametrized core potentials. Both one- and two-component
effective core potentials (ECPs) use a nonrelativistic model
Hamiltonian, and relativistic contributions arise solely from the
parametrization of the core—valence potential.

The ab initio model potential (AIMP) method*” aims at
reproducing atomic frozen-core calculations by replacing the
Fock operator of a valence electron in the field of the core
electrons

7!
) 2]5"“0’)] -
] [4

—_

core

Z Kf(j) = VCU) + Vx(]) (194)

by a local expansion for the Coulomb part

V.(j) ~ Z Age 47 (195)
7j

where the atom-specific parameters {a;, A;} are adjusted in the
least-squares sense to the all-electron Coulomb potential. A
spectral representation is used for the exchange contribution

Ke(j)~ X 1ty (1)) A5ty 0] (196)
Pq

Due to the short-range property of V, a moderate basis { )} should
suffice and the one-center approximation is expected to be good.
To prevent the valence orbitals from collapsing into the core
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region, the operator P(j) = —Xc™ 2&.|@.(j)X@.(j)| shifts the
core orbitals well above the valence orbitals to retain (approximate)
orthogonality of the core and valence orbitals. The molecular AIMP
Hamiltonian is defined by superposition of the atomic AIMP
Hamiltonians plus the core— core repulsion approximated as point—
charge interactions.

HAM = Z —%Vﬁ + V() + Vi(j) + Pe(j)
J

ny, 1 Zl Zl
+ Y =+ AZB (197)
j>kfk  A>p Ras

Keeping the AIMP parameters fixed, the valence basis can now be
optimized in the standard procedure. The molecular Hamiltonian
neglects many-center core—valence exchange, while retaining
the nodal structure of the valence orbitals, provided the valence
basis set contains also sufficiently steep core functions. This
makes AIMP calculations more expensive, while opening the
possibility to explicitly include relativistic effects for the valence
electrons in the framework of the DKH no-pair Hamiltonian**®
by use of the DKH transformed kinetic energy and electron—
nuclear attraction integrals. This may be extended to spin-orbit
coupling within the framework of the AMFI approach.**® For
computational reasons, using the smaller scalar relativistic ECPs
in combination with AMFI for spin-orbit interaction is attractive.
A simple procedure based on the equivalence of AMFI integrals
from all-electron and ECP calculations using suitably matched
basis sets has been proposed.”***%"

The model core potential (MCP) method**>** differs from
the AIMP approach by omitting the spectral representation of
the exchange operator V, and by expanding the local potential V,
in terms of radial Gaussian functions. The parametrization of V,
also implicitly includes the exchange term. Since MCPs share the
same basic features of AIMPs, scalar-relativistic contributions
and spin-orbit coupling have been recently incorporated in a
spirit similar to the afore-mentionened AMFI approach.’®*
Promising results for hydrides and cationic dimers for p-block
elements up to Rn at the SO complete active space CI (SO-
CASCI)*® and the SO multiconfigurational quasidegenerate
perturbation theo (SO-MCQDPT)** level of theory have
been reported.>***"7

An alternative form of an effective valence-electron Hamiltonian
is the use of pseudopotentials, where the atomic Hamiltonian is
given by

1 1
H= YV + ¥ V() + ¥ — (198)
25 j j>kTjk
z K —pi? av SO
Vpp(r) = T + Z Bye TV Py = Vpp + Vpp (199)
ljk
j
Py= Y [ljmym] (200)

m="—j
The kinetic energy and electron—electron interaction are non-
relativistic; i.e., all relativistic effects are included in the pseudopo-
tential. The long-range behavior is determined by the core charge;
the short-range behavior is modeled in a semilocal ansatz with the
projection operator Pj; inducing different radial potentials for
different j = 1 £ 1/2.

Scalar relativistic effects are approximated by the j-averaged
potential Vpp while the spin-orbit part is the difference from the

146

averaged potential. Both are usually expanded in Gaussians.
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(202)

Shape-consistent pseudopotentials’®*** replace the valence

orbitals of the relativistic all-electron calculation by nodeless
pseudoorbitals which retain the shape of the valence orbital
beyond a matching radius r, separating spatially the valence and
core region, while inside this radius the pseudoorbital is de-
scribed by a smooth nodeless polynomial expansion. The
pseudopotential and basis set to describe the pseudoorbitals
are tightly coupled. Ambiguities arise from the choice of the
reference data. Some of the popular sets include the following: (i)
Christiansen and co-workers®'®>'? generated shape-consistent
pseudopotentials including spin-orbit potentials derived from
DCHF all-electron calculations; (ii) Hay and Wadt>20 5
derived another popular set based on scalar-relativistic Cowan—
Griffin all-electron calculations; (iii) Stevens and co-workers™> >
compiled a more compact representation also based on DCHF all-
electron calculations.

Energy-consistent pseudopotentials®>®~>* fit the adjustable
parameters on the basis of least-squares deviations of atomic
energy levels with respect to relativistic all-electron calculations.
This approach has the advantage that it does not rely on
reproducing quantities in the one-particle picture, and the
formalism can be used to generate pseudopotentials at any level
of relativity approximation. Given that the optimization of the
pseudopotential parameters is carried out close to the basis set
limit or using accurate numerical atomic calculations, the sub-
sequent basis set optimization with fixed parameters is straight-
forward. Parameters and corresponding valence basis sets are
available for almost all elements in the periodic table both for
small and large cores.?>%32%3317346

2.7.2. Relativistic Implementations. Currently, not only
are nonrelativistic methods in quantum chemistry much more
developed than their two- and four-component relativistic coun-
terparts, but they are also computationally much less expensive.
This is to some extent related to requirements for the construc-
tion of the one- and many-particle basis, but it is also apparent
that the underlying machinery is quite different when comparing
relativistic and nonrelativistic methods. Since this is closely
related to the different symmetry properties of the spin-orbit
term in the following paragraph, specific features are discussed in
order to clarify the more detailed comparison of the various
implementations.

Although the Hamiltonian is scalar and thus rotationally
invariant, the spin-orbit coupling term contains the scalar
product of two vector operators. While nonrelativistic and scalar
relativistic Hamiltonians preserve the symmetry of space and
spin coordinates separately, the 1+s term commutes only with
symmetry operations applied simultaneously to both spatial and
spin coordinates. Thus the symmetry properties are no longer
described by the regular (single) point groups. To account for
spin 1/2 transformation properties, the double groups are
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introduced. Half-integer spin functions transform according to
the D/? irrep of the full rotation group such that a rotation by 277
leads to a sign change while a 47 rotation is the unit operation.
The double group may be derived from the regular (single)
group by adding the extra symmetry element E representing a
rotation by 2s1. Thus the number of symmetry operations is
doubled, and in addition to the regular (bosonic, even number of
electrons) irreps describing the transformation properties of
integer angular momentum functions, fermionic (odd number
of electrons) irreps describe the transformation properties of
half-integer angular momentum functions.>****

In the absence of an external magnetic field, the Hamiltonian
also commutes with the time-reversal symmetry operator
(Kramers operator). By virtue of Kramers theorem, wave func-
tions with integer spin momentum may be chosen to be real.
Half-integer (fermion) functions, however, are 2-fold degenerate.549
The degenerate components are related by Kramers operator (K)
forming a Kramers pair (¢, $).

K$=¢ Ko= —¢ (203)
The group-theoretical properties of the Kramers pairs are connected
to the structure of the fermionic irreps of the double group. For the
odd-electron case, three different cases are distinguished depending
upon the transformation properties of the Kramers pair functions:
(i) in real groups they span the basis of a two-dimensional fermion
irrep (e.g, D3, C3,, D3); (ii) in complex groups the components
transform as two different fermion irreps (C%;,, C% C3%); (iii) in
quaternionic groups the components transform as the same one-
dimensional irrep (C¥, C}). Thus, given a hermitian one-electron
operator h symmetric under time-reversal and spatial symmetry, in a
Kramers basis the off-diagonal block /5 vanishes for real and
complex groups, whereas a quaternionic transformation is necessary
to have case iii block diagonal. For real grougs, the Hamiltonian and
the wave function may be chosen to be real,”**~*>* whereas they are
complex in cases ii and iii. Thus time-reversal symmetry may be
exploited reducing the overall effort, as well as to classify the algebra
(real, complex, quaternionic) in the general case. Hence, to
incorporate double group and time-reversal symmetry, one may
work in a Kramers basis of one-electron spinors and rewrite the
Hamiltonian in terms of Kramers single- and double-replacement
operators.*” This results already in a considerable reduction in the
number of two-electron integrals. This carries over to the classifica-
tion of determinants according to the number of occupied Kramers
pair functions, N(p) and N(p), and the projection M. = (" /,) (N(p) —
N(p)). The Hamiltonian matrix in a basis of these determinants
displays a block structure due to the selection rule Hy; = 0 for
|AM,| = |MI;c - M, «| > 2 and the algebraic classification (real,
complex, and quaternionic).*>” Within this formalism, the nature
of the spin function in the one-electron spinor is not restricted to
either a or 3 spin but is a general linear combination thereof.
Since the spin-orbit term couples determinants of different spin
projections My, the underlying configuration space is usually
limited to some maximum range of | My — My/| with respect to a
reference value My (see also ref 553).

An alternative procedure sets out with nonrelativistic spin- and
spatial-symmetry-adapted many-electron functions, i.e., the un-
ion of all (2§ + 1) degenerate components for multiple spin
multiplicities of all spatial symmetry irreps ([j;S,M,I')). The
nonrelativistic Hamiltonian matrix is block diagonal with respect
to S, M, and " (cf. eqs 10 and 11). Adding (effective) one-
electron spin-orbit coupling terms introduces off-diagonal blocks
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in the Hamiltonian matrix since nonzero matrix elements occur
for |AS| = 1and [AM]| =< 1, so that the Hamiltonian matrix has a
complicated block structure.’*’ The matrix elements of the
spin-orbit coupling term can be evaluated by means of the
Wigner-Eckart theorem, reducing the overall effort. How-
ever, this technique is limited to real orbitals, and in general
the Hamiltonian matrix is complex, although the above group
theoretical restrictions and simplifications apply.

Spin-orbit coupling affects the selection of the one-electron
basis. A large difference between the radii (r*) of the pairs of
spinors | = 1/2 from DHF calculations®** suggests the need for
an optimized two-spinor basis. Main group elements primarily
fall into this category, while transition metals, lanthanides, and
actinides may well work with a scalar-relativistically optimized
(real) MO basis. Otherwise, an inadequate MO basis must be
compensated for by a larger N-electron basis, i.e., including single
excitations to (highly) excited states, in order to account for spin
polarization of the average orbitals toward the [ & 1/2 spinors.
On the basis of experiences with two-component Kramers-restricted
HF calculations using spin-orbit pseudopotentials to generate the
j-specific spinors for subsequent two-component electron correla-
tion calculations, it has been argued that the configuration space
expansion is more compact and converges more rapidly.555

2.7.3. Scalar Relativistic Effects. In this section, some
general aspects related to the extension of existing nonrelativistic
MCSCF and MRCI methods to approximate two-component
relativistic calculations are discussed.

Scalar relativistic effects approximated in terms of pseudopo-
tentials, AIMPs, or using the DKH-no-pair Hamiltonians are
completely transparent to any conventional MCSCF or MRCI
code since only the one-electron integrals are affected. Separa-
tion of spatial and spin coordinates, and thus the related
symmetry considerations, are unchanged as compared to non-
relativistic calculations. Whereas effective valence electron ap-
proaches (pseudopotentials, AIMPs) rely on the proper choice of
the core region and the parametrization, all-electron treatments
are free of these limitations. The DKH-based description of scalar
relativistic effects requires basis sets capable of describing the
core region, which leads to increased computational costs.
Similar considerations apply to the AIMPs, as the nodal structure
of the valence orbitals in the core region must be adequately
reproduced. All-electron calculations can be systematically im-
proved, a feature that does not apply to pseudopotential
approaches, even with multiple parametrizations for different
core sizes, since the transferability to the molecular case can be
limited. Given the cost/accuracy ratio, pseudopotentials and, to
lesser extent, AIMPs are very eflicient.

2.7.4. Two-Component Extensions of MRCI. There are
some technical and conceptual obstacles to incorporate spin-
orbit coupling into traditional MRCI codes while retaining the
simplifications due to the use of one-component (real) orbitals.
This is equivalent to a Kramers basis with collinear spin (¢ or ).
For any direct-CI method, it is important to evaluate the
Hamiltonian matrix elements very efficiently on-the-fly, so that
spin-averaged, real, molecular orbitals, a real Hamiltonian, and
the use of existing nonrelativistic machinery for the compute-intense
matrix—vector product formation are all important assets.

The evaluation of the spin-orbit matrix elements is split into
the product of an orbital-dependent contribution and a spin-
dependent contribution evaluated on-the-fly using partially tabu-
lated data. The one-electron integrals have been implemented
for more than 2 decades.”>® The rather numerous two-electron
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spin-orbit integrals (with different symmetry properties) are
either completely neglected with pseudopotentials or approxi-
mated within an effective one-electron operator (AMFI approxi-
mation**®). However, in a real spin-adapted or determinant basis,
the spin-orbit matrix elements are imaginary.

The dimension of the configuration space including spin-
orbit coupling may be an order of magnitude larger than for
the nonrelativistic counterpart. Since the efficient evaluation of
Hamiltonian matrix elements is closely tied to the enumeration of
the many-electron basis, the seamless integration of this superset
into the enumeration scheme is quite important. GUGA-based
implementations, for example, employ a multiheaded Shavitt graph
in which each head represents a separate spin multiplicity.”>” Both
CSEF- and determinant-based expansions need to deal with multiple
M values and spatial symmetries. To gain insight into the structure
of the determinant space, graphical representations are helpful.*

For a complex Hermitian matrix H = P + iQ, where P and Q
are real-symmetric and skew-symmetric matrices, respectively,
the corresponding eigenvalue equation is Hz = zE for real E and
complex z = u + iv for real components u and v. If z is an
eigenvector, then ¢z = (cos(A)u — sin(8)v) + i(sin(Q)u +
cos(0)v) is also an eigenvector for arbitrary phase 6. Thus the
splitting between the real and imaginary components is some-
what arbitrary, and 6 may be chosen freely to simplify the wave
function analysis (e.g., to minimize the complex component
norm or to maximize the component overlaps with some
reference vector). The complex eigenvalue equation of dimen-
sion m may be expanded as

() (2 )0

-V
where H' is real symmetric with dimension 2m. The vector ( u )

is also an eigenvector of H' with the same eigenvalue E. In
general, each of the eigenvalues of the complex H are
replicated®® in the eigenvalue spectrum of the expanded H'.
An arbitrary plane rotation of the two degenerate eigenvectors is
also an eigenvector, cos(6) (:) + sin(0) ( uv ) , which is seen to
be simply another expression for the arbitrary complex phase of
the original complex eigenvector. Thus, for the pair of degenerate
eigenvectors of the expanded H’, there exists only a single linearly
independent complex eigenvector z. For small dimensions m, the
choice between these two representations is rather arbitrary, but
for larger dimensions in which a direct diagonalization is used,
the complex representation is about a factor of 2 more efficient
(~(4m3) operations for H compared to N(Zm)3 operations for
H') in addition to the larger storage requirements for the
expanded H'. For iterative subspace methods for only a few
eigenpairs, the computational effort is comparable for the two
approaches. The complex Hermitian generalization of the Da-
vidson subspace method is straightforward. In the expanded
representation, the matrix—vector products Pu, Pv, Qu, and Qv
are required within each iteration for trial vector components u
and v. These vectors can then be combined to increase the
subspace dimension by two each iteration, equivalent to adding

u
both expansion terms ( ) and ; this requires no sub-

stantial additional effort, :de the resulting subspace Hamiltonian
has replicated Ritz values, mimicking the true eigenvalue spec-
trum of the expanded form H'. In the case of additional
degeneracies, e.g., the II states in linear molecules, the four

associated eigenvectors of the expanded H' may mix arbitrarily,
and when combined into complex form, only two linearly
independent complex z vectors can be constructed. The choice
of representation of these two orthogonal complex eigenvectors
can affect the continuity of the wave function representation and
the computation of transition properties.*®®

The complex matrix H of dimension m can take a partitioned
‘ A —iC"

orm H = ic B
for arbitrary real rectangular C. In this situation, a unitary
transformation of the form H—U'HU }Nith U = diag(1,i1) will

A

C B
has the same eigenvalues as the original matrix. The eigenpairs
may be determined with a real symmetric diagonalization in the
straightforward way without complications due to replicated eigenva-
lues. The eigenvectors in the original basis representation are given by
U'c. This property can generalize to certain matrices with multiple
partitions. By using symmetry arguments, it can be shown® for the
real groups (D3, C3,, D3) in a double-group adapted many-electron
basis either that the complex Hamiltonian matrix can be brought to this
real form or alternatively that the phases of the many-electron basis may
be modified in order to make the corresponding Hamiltonian
representation real. All computations may then be done with real
arithmetic only. This applies to both even and odd electron cases, as
expected for real groups from the discussion above. For even electrons,
it can be shown that the spin functions in terms of real spherical tensors
(linear combinations of |k;S,M) and |k;S,—M)) form a symmetry-
adapted basis for the double group, and, with the appropriate phase
convention, all nonvanishing spin-orbit coupling matrix elements are
real>” The odd-electron case can be adapted to the even-electron
formalism by formally adding an additional, fictitious, noninteracting
electron; this results in a doubling of the dimension of the Hamiltonian
matrix, and in replicating the eigenvalues, since for complex and
quaternionic groups the Hamiltonian is generally complex.

When dealing with highly degenerate open-shell cases such as
actinides and lanthanide compounds, the sheer size of the
potential configuration space raises the fundamental question,
to what extent it is admissible to approximately decouple electron
correlation and spin-orbit coupling effects in order to reduce the
computational effort? Due to the substantially reduced com-
plexity, as well as computational effort, two-step approaches have
been popular from the very beginning.**® The simplest approach
amounts to computing a range of electronic states of different
spin multiplicity or spatial symmetry including scalar relativistic
effects.

There are two types of general approaches based upon
modifications of the nonrelativistic MRCI procedure, (i) the simulta-
neous treatment of electron correlation and spin-orbit coupling on the
same footing (one-step procedure) and (i) the model space or
effective Hamiltonian approach (two-step procedure). Treating spin-
orbit coupling and electron correlation on the same footing, the one-
step approach, is thus quite expensive and requires highly efficient
programs. There are three major codes capable of such calculations. (i)
The conventional CIDBG code by Pitzer and co-workers**%5%%61°6>
which supports double groups is, due to the storage requirements for
the CI matrix elements, limited to ~10° CSFs when used in
combination with spin-orbit pseudopotentials; closely related is a
variant of this approach using an additional configuration selec-
tion scheme (selected intermediate coupling CI).****%* (ii)
The GUGA-based direct-CI code supporting double groups

for real symmetric square A and B and

result in a real, symmetric H = ( of dimension m that
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by Yabushita et al,>” the parallel version of this code,''® is

capable of dealing with CSF expansions up to ~10°. (iii) The
individually selected direct-CI code SPOCK.CI**® which uses a
basis of spin-adapted CSFs without double group support but
optionally in combination with the DFT/MRCI method.*** In
this last (empirical) method, dynamical electron correlation (and
size-extensivity) is approximately accounted for by DFT while
MRCI is responsible for static electron correlation. DFT MOs
furnish the one-electron basis. To avoid double counting of
electron correlation, the off-diagonal CI matrix elements are
scaled by an empirical energy-dependent term while the diagonal
elements are modified by Kohn—Sham matrix elements. The
selection of near-degenerate configurations relies on an energy
gap criterion. The DFT/MRCI Hamiltonian combination works
very well with an individually selected CI code because individual
Hamiltonian matrix elements may be easily modified in the
direct-CI scheme, and there is an immediate computational gain
with the substantial reduction of the MRCI expansion dimen-
sion. The parallel version of this method, however, seems to be
not well parallelizable and, due to random memory access, suffers
from cache misses.”*" A priori selected CI codes are not generally
suitable because they define a particular expansion form for the
wave function and exploit this to efficiently compute the CI
matrix elements on-the-fly. Since the contributions of individual
integrals are additive, CI matrix elements are constructed in-
crementally to exploit vectorization and retain only a minimum
of logic. For example, the GUGA-based MR-CISD implementa-
tion in COLUMBUS can utilize DFT/MRCI efficiently, only if
the entire CSF space is defined within the internal orbital space.
Although this is a natural choice, the size of the internal orbital
space may be large and some structural selection scheme must be
devised to avoid the exponential scaling of the underlying full-CI
space. Thus, the large combined CI space dimension in one-step
spin-orbit CI is reduced, and calculations including spin-orbit
coupling on larger molecules are possible.

For individually selected MRCI codes, the automated selec-
tion of configurations for variational treatment is critical in the
case of spin-orbit CI because the usual selection criteria based on
perturbation theory estimates of the correlation energy contribu-
tions would leave out the important single excitations because,
due to Brillouin’s theorem, their contribution to the correlation
energy is insignificant. However, many of these single excitations
are indispensable in order to compensate for the choice of spin-
averaged real molecular orbitals which are biased as compared to
the respective optimized two-component spinors. These single
excitations allow for orbital relaxation effects relative to the
spin-averaged MO basis. Thus, all singles, or a major subset of
all singles, with respect to the already selected CSF space (e.g.,
by symmetry criteria or perturbation theory estimates) must be
added in order to obtain reliable zero-field splitting. Although
SPOCK.CI simultaneously treats electron correlation and
spin-orbit coupling on the same footing, the initial contracted,
effective, complex Hamiltonian is set up and diagonalized.
This serves to select the CSF space, to generate starting vectors
for the final, fully coupled, MR-SOCI step, and to obtain a
quasidegenerate perturbation theory (QDPT) estimate of
the spin-orbit effects (equivalent to the two-step approaches
below).

Two-step approaches are characterized by some separation of
spin-orbit coupling and electron correlation effects. Among
the simplest approaches is to compute various |;;5,M) and to
evaluate spin-orbit coupling by first- and second-order perturbation

theory from the spin-orbit coughng matrix elements between
pairs of these electronic states.’®® The set {|Y:$M)} may also
include the spatial and spin-degenerate components of the scalar-
relativistic electronic wave functions. Thus, this may be described
as a two-step approach using contracted (scalar-relativistic)
wave functions while ignoring any relaxation due to spin-orbit
coupling,

An improved approach employs QDPT:*® a model Hamiltonian
in the contracted basis (of up to a few hundred) {|y;S,M)} is
constructed, all off-diagonal spin-orbital coupling matrix ele-
ments (1/}7;S,M|HSO|1/);<;S’,M’) are evaluated, and this small,
complex-hermitian, model Hamiltonian is diagonalized. The
major limitation of this approach is that spin-orbit coupling
allows for relaxation of the wave functions only within the small
model space. Since an effective Hamiltonian is constructed, this
allows for further variations. The SO-RASPT2 approach*’>%%
assumes the separability of dynamical and static correlation; the
contracted basis {|1;S,M)} is computed at the RASSCF level of
theory, and the off-diagonal spin-orbit matrix elements are
computed within the AMFI approximation. The matrix elements
of the model Hamiltonian are shifted to account for state-specific
dynamic electron correlation effects (e.g., derived from scalar-
relativistic CASPT2 or MRCI calculations), and the eigen-
values and eigenvectors are computed. The implementations of
SO-CASCI®® and SO-MCQDPT*" limited to CAS reference
spaces follow a similar strategy.

Individually selected MRCI codes typically suffer from inher-
ent inefficiencies in evaluating the Hamiltonian matrix elements
on-the-fly. They primarily gain from a drastic reduction of the
size of the variationally treated configuration space; a posteriori
perturbational corrections for the contributions of the omitted
configurations are indispensable. In a contracted variant, initially
the individual states {|1;;S,M)} are computed with a large CSF
expansion space, supplying the diagonal elements of the model
Hamiltonian. The contracted {|1;S,M)} states are projected
onto a reduced basis of determinants {|1);S,M)}eq. which still
gives a qualitatively correct description of the {|1);;S,M)} while
offering a more economical basis to evaluate the off-diagonal
elements (wj;S,M|HSO|1/)k;S’,M’)redA of the model Hamiltonian.
The small complex model Hamiltonian is diagonalized.568 Simi-
lar two-step effective Hamiltonian approaches have been pro-
posed by Hess et al,** Rakowitz and Marian,** and Buenker
et al.>’° As before, orbital relaxation due to spin-orbit interaction
(spin-polarization) is difficult to account for in a contracted
approach. This problem is addressed in the EPCISO method.>”"
Here the model Hamiltonian is computed from the uncontracted
reduced determinant basis, enhanced by singly excited determi-
nants to incorporate spin-polarization, and includes corrections
for electron correlation effects of the individual {|1;S,M)} states
in the large basis. The size of the full complex model Hamiltonian
is limited to ~10° with conventional CI methodology. Hence,
this approach is fairly closely related to the SPOCK.CI imple-
mentation but considerably more restricted in terms of config-
uration spaces.

Another two-step approach has been proposed by DiLabio.***
Electron correlation effects for the multiple {|1/;S,M)} states are
computed in extended scalar-relativistic MR-CISD calculations.
The spin-orbit splitting (E°°) is estimated from the energy
difference between the scalar-relativistic and two-component
MR-CIS calculations; i.e., the configuration space includes static
electron correlation plus spin-polarization effects using a version
of COLUMBUS CIDBG with configuration selection.***
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2.7.5. Two- and Four-Component MCSCF and MRCI.
The relativistic MOLFDIR/DIRRCI program package®”” sup-
ports open-shell DHF calculations for the optimization and
selection of the molecular spinor basis for subsequent CI
calculations. Double-group and time-reversal symmetry is sup-
ported. The direct-CI code operates in a determinant basis
following a generalization of the RASSCF approach®”® and using
a (multiheaded)®” graphical representation of the CI space. An
improved version of the DIRRCI code is part of the DIRAC10
program package.>”?

The two- and four-component relativistic direct-CI code
LUCIAREL*"*7379%3% employs the DKH transformation for
the one-electron integrals in combination with the AMFI
approximation using a Kramers-pair spinor basis. It was pointed
out that the DKH-transformed two-electron integrals lead only
to minor corrections of the total energies of the Ag and Au
atoms.*** Both collinear and noncollinear spin functions are
supported, though the latter requires on optimized two- or four-
component spinor basis optimized at the SO-MCSCEF level of
theory with, in general, complex orbitals. Since the AMEFI
approximation includes an approximate treatment of the Breit
term, this kind of relativistic approach might be considered
superior to four-component Dirac—Coulomb CI calculations.
Abelian and quaternionic double groups (C%, C§ C3%, C% C3))
are supported with work toward the subgroups of D3, in
progress. Many implementations of two- and four-component
MRCI codes are limited to real double groups or cannot
necessarily exploit double group and time-reversal symmetry.
GAS-type configuration spaces (multiple orbital subspaces with
individual minimum and maximum occupation number con-
straints) are supported. Because this code is initially based on a
nonrelativistic full-CI implementation using a string-based de-
terminant formalism, there are no hard excitation-level limits.
Since the structure of the Hamiltonian does not change, the code
supports both two- and four-component calculations provided
the appropriate integrals are available. A parallel version has been
implemented, and calculations on the BiH ground state with up
to 428 million determinants showed modest scaling for 32 Linux
quad-core nodes with a 1 Gb/s ethernet network.

For heavy elements, in particular actinides and lanthanides, the
near degeneracy of s, p, d, and f shells, already apparent with
nonrelativistic and scalar-relativistic treatments, suggests the
need for a multiconfigurational orbital optimization incorporat-
ing static electron correlation effects. Including spin-orbit
coupling, the splitting of otherwise degenerate states increases
the density of low-lying electronic states so that a relativistic
MCSCF treatment appears even more important. Atomic
MCSCEF calculations show that orbital optimizations with static
electron correlation only must include spin-orbit coupling in
order to arrive at reasonable spin-orbit splitting. From two-
component MRCI calculations, it is well-known that spin-
polarization must be accounted for with a spin-averaged orbital
basis; in fact with individually selected CI the necessary single
excitations may constitute the major part of the CSF space.
Hence, more compact relativistic CI expansions may be expected
from relativistic MCSCF orbital optimization. A rather general
formalism for two- and four-component molecular MCSCE,
based on one-electron spinors in the Kramers-pair basis, has
been proposed by Jensen et al.**” and Fleig et al.>”” and has
been recently implemented.””® Another somewhat less general
two-component MCSCF implementation, based on spin-orbit
pseudopotentials, has been reported by Kim and Lee®”

2.8. Parallel Computing

Quantum chemistry has historically been one of the leading
fields in the use of parallel computing.***~** In view of the
resource demands of many MCSCF and MRCI implementa-
tions, both in terms of CPU time and memory consumption, it is
reasonable to efficiently exploit the inherent potential of today’s
computational resources. However, the performance available
from state-of-the-art computer systems is almost exclusively due
to massively parallel execution. Current supercomputer hard-
ware offers PELOP/s (10'° floating point operations per second)
peak performance to those who manage to exploit it. Until
recently, PFLOP/s computer systems relied on an increasingly
larger number of compute nodes (=10"). Graphical processor
units (GPUs) and accelerator cards are emerging as tools for
computational science. These use hardware-accelerated densely
integrated parallelization and vectorization to achieve peak
performance in the TFLOP/s (10" floating point operations
per second) range at significantly lower cost and energy con-
sumption. High-end multicore CPUs, GPUs, and accelerator
devices are all currently available on the general market. Thus,
to take advantage of the tremendous computational power
available with current and upcoming hardware developments,
parallelization is essential. However, quantum chemists must
modify and adjust their algorithms to utilize this inherent
computational power.

The first part of this subsection gives a brief overview of
current parallel computer architectures by presenting some
details about the computational units, memory, and network
architecture. The next subsection sketches some general parallel
programming paradigms. The last subsection includes details of
parallel multireference methods (MCSCF and MRCI) and the
corresponding analytic energy derivatives.

2.8.1. Parallel Computer Architectures. Parallel computer
systems can be classified as distributed or shared memory
computers. While all CPUs in shared memory systems have
direct access to the same address space, distributed memory
systems need to exchange data between the nodes by explicit
message-passing through a communication network. Most mod-
ern parallel computers are a combination of shared and distrib-
uted memory architectures since each individual node hosts
multiple (multicore) CPUs sharing the same address space.
Currently GPUs and accelerator devices operate on dedicated
high-speed memory, physically separated from the main memory
of the compute node, and therefore they resemble the char-
acteristics of distributed memory systems with a high-speed
interconnect.

2.8.1.1. Computational Units. Current parallel computers
tend to be built from widely available standard components of
high-end personal computers (PCs), and, albeit equipped with
special hardware to connect to the communication network, the
technical development of the individual compute nodes parallels
those available with PCs to the general public. Supercomputer
systems combine a large number of processors with a high-speed
network and aim at massively parallel codes. Considerable effort,
both in terms of hardware and software maintenance, must be
invested to keep them fully operational. Standard parallel com-
puter clusters combine a smaller number of nodes, but for this
same reason are easier to operate, and they provide a powerful
general-purpose resource for many applications.

Initially vectorization (or pipelining) took advantage of per-
forming multiple identical instructions in several overlapping
stages, followed by CPUs supporting multiple instructions to
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begin executing each clock cycle (multiple issue), combined with
increasing clock speeds allowed for an increase in the serial
performance by about 4 orders of magnitude since 1980. Since
about 2005 the performance gain is almost exclusively due to
multicore CPUs; ie., multiple general-purpose processors are
combined on a single chip. However this development does not
reduce the execution time of a serial code; it is only through
parallelization that performance gains are possible from the
hardware.

On GPUs, or accelerator cards, many more, albeit much
simpler, cores are combined on a single chip to provide a
tremendous performance (~100—1000 GFLOP/s peak) for
the single-instruction multiple data (SIMD) mode. Recently
GPUs, initially developed to accelerate graphics operations, have
reached advanced levels of sophistication. Most importantly,
more user-friendly programming models and tools (e.g,
CUDA,*® OpenCL*™) for these devices have led to growing
popularity of GPU programming in a variety of scientific
disciplines. Accelerator devices (e.g., ClearSpeed ¢710°*) along
with CSXL programming tools are fairly similar from the
application point of view. They are characterized by multiple
SIMD array processors that support tightly coupled vectorization
and parallelization combined with a very high internal memory
bandwidth (>150 GB/s) and are well-suited for data-parallel
applications.

2.8.1.2. Memory Architecture. Current computers have a
hierarchical memory structure with multiple data storage devices,
each with widely different characteristics.** Registers, level 1
(L1), and level 2 (L2) cache operate at very high speed and are
private to each core. The L3 cache is substantially larger but
shared among all cores of a CPU. The next level in the hierarchy
is the computer’s main memory, which is usually shared. On a
node with multiple multicore CPUs, the access to the node’s
shared memory is not uniform, and the available memory
bandwidth may be optimized by preferentially accessing memory
banks physically close to the core. Access to remote memory on a
distributed-memory machine is slower by about 1—2 orders of
magnitude due to the use of the interconnect.

As a consequence of the ratio of FLOP rate to memory
bandwidth, the increasing number of cores residing on a single
node causes the observable performance to appear increasingly
memory bandwidth limited. The efficiency of the hardware-
controlled cache management is very sensitive to the memory
access pattern of the application.**® The compiler primarily
manages efficient register allocation, optimum order of instruc-
tions, and use of available features of the CPU. Hence, it is
important for the application code to avoid random access to vast
portions of the memory. Since paging may drastically deteriorate
performance, some supercomputer architectures, such as the
IBM BlueGene/P, do not permit the virtual memory space to
exceed the available real (physical) memory.

2.8.1.3. Network Architecture. The communication network
connects the nodes and consists of communication links and
switching elements connecting these links. It is characterized by
the network topology, bandwidth, and latency. The network
topology describes how the nodes are physically connected (e.g,
ring, 2D mesh, 2D torus, 3D torus, or crossbar) and each
topology may display very different performance characteristics.
The performance of a network correlates with the maximum
number of hops required to pass a message between two arbitrary
nodes in the network. The economical cost of a network rather
correlates with the number of switches and the number of links

per switch. Hence, a crossbar connecting all computing elements
with a single switch and a single hop would be perfect for
performance but economically and technically unfeasible for a
large parallel computer system. Thus, mesh and torus network
topologies are commonly encountered as compromises between
costs and performance. In addition, the time needed to pass a
message between two nodes is given by t = t;, + V/bw, that is, the
latency of the initial startup time (#,.) and the data volume (V)
divided by the bandwidth bw. For (nonfarming type) applica-
tions, remote data access is a major bottleneck, and efforts
devoted to optimize the algorithm should address the following:
(i) sending a few large messages instead of many small ones, (ii)
passing messages asynchronously to hide latency, (iii) passing
messages between nodes such as to fit the network topology and
to minimize the number of hops, and (iv) avoiding unnecessary
collective all-to-all data transfers.

2.8.1.4. File Systems and Disk I/O. The slowest, but also the
largest, medium on which to store data in routine parallel
computations is the hard disk. Even on the consumer market,
multi-TB hard disks are available at moderate prices. For
compute servers, it is not uncommon to have 10 TB file systems,
and supercomputer systems provide petabyte (PB) storage
systems. To avoid I/O contention, the accumulated I/O band-
width should ideally scale linearly with the number of compute
nodes. The simplest way to achieve this is by adding local RAID-
based file systems. The disadvantage of this is that the files are
only locally visible and thus primarily used for local scratch files.
In addition, with 210" hard disks distributed over the entire
machine, the overall mean time between failure (MTBF) may
cause machine instability and frequent data loss, which requires
additional considerations of fault tolerance and redundancy. The
alternative is a common parallel file system (e.g, PVES,>"
GPFS,*® and LUSTER®®) which resides separately on a cluster
of dedicated file servers, with files visible to all compute nodes,
and hiding all the storage details. The maximum aggregate I/O
bandwidth is available only when the I/O characteristics of the
application match the performance characteristics of the parallel
file system. Special parallel I/O libraries (e.g., SIONIib>” and
MPI-1/0*®) may be invoked by the application code to trans-
parently ensure optimum usage of the file system. Despite all
these advances in I/O technology, it should be kept in mind that
today’s compute nodes easily saturate the bandwidth of any file
system. To avoid dramatic deterioration of the I/O bandwidth,
the data access pattern is significant: while sequential (con-
tinuous) access to a data file allows the file system to efficiently
perform read/write operations (with either fixed or variable
record lengths), this may be impossible for random data access
patterns. For small files fitting completely into the available file
cache, usually no performance degradation occurs.

2.8.2. Parallel Programming Techniques. Parallelism
offers great opportunities to extend the range of feasible applica-
tions both in terms of the molecular system size and turnaround
time. Additionally, as already pointed out, parallelism is essential
in order to exploit modern computer architecture. The nature of
algorithms in quantum chemistry tends to be rather complex,
compute intensive, and frequently very data intensive. Parallel
algorithms add an additional layer of complexity and must be
sufficiently flexible to account for current and future hardware
developments. Using high-level tools to isolate the user code
from the details of the bookkeeping and hardware specifics is
recommended. The easiest way to approach parallelization is by
using community-supported open-source or vendor-supplied
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parallel libraries for major parts of the work (e.g, linear algebra,
sorting, and other common tasks). Libraries alone are frequently
not a sufficient solution because the code rarely spends all of the
time in these library calls.

The next programming technique is automatic parallel code
generation by the compiler (e.g, OpenMP>*" and HPF>*%); with
the possible exception of single-node parallelization, this often
results in disappointing performance because, without further
guidance by the programmer, the compiler can recognize data
parallelism only at very low levels.

Hence, in many cases it is necessary to manually parallelize a
program. The major programming paradigms are thread- and
process-based parallelization. Using processes amounts to run-
ning multiple copies of the application in disjoint address spaces;
data exchange between them must be programmed explicitly—
all data are private by default. The popular single-program
multiple-data (SPMD) programming model is an example of
process-based parallelization. In the thread-based model, code
sections are executed simultaneously by multiple cores sharing a
common address space; all data are shared unless specified
explicitly otherwise. Consequently, it is limited primarily to
shared-memory address machines. The hybrid model aims at
combining the strength of the process- and thread-based pro-
gramming paradigms. Specifically, this may mean spawning one
process per node and additionally creating up to n, threads per
process on each node where 7, should not exceed the number of
cores per node. Parallel programming paradigms are constantly
adapting to new challenges posed by hardware development and
method development in the respective fields of research.

2.8.2.1. Internode Communication. The fundamental pro-
blem for parallel threads of execution running on different nodes
is how to exchange data between nodes since the address space is
physically disjoint. The first approach was the message passing
model with both partners actively participating in the data
transmission. This was implemented in terms of libraries such
as TCGMSG,** PVM>** and MP1,>*® where MPI is today’s de
facto standard. The disadvantage of this paradigm is a vulner-
ability to load-balancing problems if tasks are not uniform; this
can be addressed by dynamic task assignment at the cost of
additional complexity. The active pairwise participation in the
data transfer sometimes leads to awkward code and complicated
bookkeeping of the distributed data. One-sided memory access,
accessing remote data without exglicit coordination of the
remote processes (e.g., ARMCI,59 DDI,597 PPIDD,598 and
MPI-2°%), can simplify the application code programming
considerably. By extending this é)aradigm to globally distributed
data structures (global arrays®*®), much of the bookkeeping in
the application code can be avoided. Yet, due to efficiency or
compatibility with the underlying algorithms, it is not always
sensible to use such global data structures. While decomposing
the dominant task in a serial code into independent tasks, with
either static or dynamic load balancing, the structure of the code
remains basically intact. Carrying out data-parallel operations on
distributed data or using parallel linear algebra (via libraries, e.g.,
ScaLAPACK®?) is straightforward. To take full advantage of
distributed data (e.g., because the available memory per node is
insufficient), the basic (serial) kernels must be modified in order
to match operations and data access patterns under constraints
arising from communication overhead and bottlenecks, load
balance, and local memory requirements.

2.8.2.2. Intranode Communication. Processes run on the
same node and work within the same physical memory but with
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distinct virtual address spaces. Thus, the message-passing para-
digm can also be used for process communication within a node.
This can simplify the programming demands because it allows
the same programming model to apply to both the distributed-
and shared-memory levels of the hardware. Alternatively, the
processes may set up a common memory segment to be shared
by all, which can be much faster than transferring data via a
message-passing interface. However, the application must ensure
that no two processes write simultaneously to the same memory
address since the result would be unpredictable for any non-
atomic operation (race condition). This can be achieved either
by appropriately modifying the application algorithm to allow
only disjoint access or by using semaphores to define critical code
regions that can be entered by only a single process at a time. The
latter approach involves some overhead and implies partial
serialization of the code, which can result in performance bottle-
necks. Usually, processes are created for the lifetime of the code,
though this is not mandatory.

The paradigm of multithreading parallelism advocates the use
of threads, lightweight processes that require low overhead for
creation and destruction, making feasible threads with short
lifetimes dedicated to specific tasks. In addition, threads inherit
and share all data of the parent processes plus additionally having
private local data (possibly copies of certain data of the parent
process). Thus, a thread-safe code must avoid modifying shared
data in an unpredictable manner (e.g., simultaneous access by
multiple threads). Threads can be manipulated either explicitly
through calls to the pthread library®® or implicitly by use of
compiler directives (e.g,, OpenMP**") that signal the compiler to
automatically add the supporting code. Although multithreading
is used for fine-grain parallelization, it should not be taken to
extremes. With all data residing in cache, a thread lifetime of the
order of at least about a millisecond (or ~10” operations) greatly
exceeds the thread administration overhead (1—10 s on current
architectures) and should yield good parallel performance.

Process-based parallelism (either message-passing or intra-
node shared-memory) can be combined with multithreading in a
hybrid programming model.

2.8.2.3. GPU and Accelerator Usage: Recent Developments.
GPUgs, as well as accelerators, take advantage of tightly coupled
vectorization and parallelization by distributing data-parallel
SIMD-like tasks across multiple stream processors. Technical
specifications quickly become outdated due to the rapid devel-
opment in this field, so the following performance values serve
only as a guide. The internal memory bandwidth is very high
(~150 GB/s), while the interface to the computer’s main
memory is relatively slow (~4 GB/s) given the peak perfor-
mance between 100 and 1000 GFLOP/s. Multiple GPUs or
accelerator cards, equipped with several GB memory each, can be
attached to a single host. However, in order to extract the
computational power, the GPU kernel must contain little or no
logic and have a large ratio of floating point operations to data
items; the matrix—matrix multiply operation is the typical
benchmark. Due to the slow connection to the computers main
memory, especially with multiple GPUs, invoking GPU kernels is
often bandwidth-limited. Ideally, the compute-intensive, data-
parallel kernels should remain as long as possible on the GPU
while generating only a modest amount of output data. The
actual hardware-dependent code is usually generated by com-
pilers, guided by compiler directives that define the parallel
sections and the partitioning of data and that initiate data
transfer between host and GPU. Optimization of algorithms is
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challenging because the actual run-time behavior is difficult to
analyze and to connect to the structure of the algorithm. Simple
data-parallel algorithms are advantageous in this task. GPU or
accelerator card usage has been reported in context with integral
evaluation within the framework of Hartree—Fock®'~*** and
density functional theory.®**%°

2.8.3. Parallel Multireference Methods. 2.8.3.1. Four-
Index Transformations. Because the electron correlation energy
converges very slowly with basis set size, highly accurate calcula-
tions even on rather small molecules can require very large basis
sets. On the other hand, for more qualitative investigations of
excited states of larger molecules (20—30 atoms), the AO basis
set requirements are somewhat relaxed, yet the total basis set size
easily reaches 300—500 basis functions and more. While the one-
and two-electron integrals are best evaluated in the atom-
centered basis (possibly symmetry-adapted), the wave function
optimization and manipulation is best carried out in an ortho-
gonal basis of molecular orbitals. Hence, a four-index transfor-
mation is necessary to switch between AO- and MO-based
representations. Since four-index transformations play a central
role in the wave function optimization and gradient evaluation
steps, some variants of parallel implementations are discussed
in detail.

The full four-index transformation

(ijlkl) = ¥, CuCyCarCuluvlia) (205)
UvKA

evaluated straightforwardly with eight nested loops requires
O(n®) multiplications. Decomposing the transformation into
four quarter-transformations and storing the intermediates re-
duces the effort to O(4n°)

n

k) = 3 Cul 3 Gyl 3 ckk[g Ca(wA)]l]  (206)

v

More efficiently, the AO integrals are sorted into distributions
such that all integrals with the common index pair uv are
collected into a matrix I%; with indices xA. The transfor-
mation proceeds by the first half-transformation of each
distribution 1"

Iy = % Cals Ca (207)

In matrix notation, " = C'I*”C. This localizes the memory
access for each distribution within the procedure. This is
followed by a disk-based (or, in a parallel environment,
distributed-memory-based) transposition®®® of the half-
transformed integrals Ifj" — I/’jl,, to prepare for the second
half-transformation

B = Y Cufc, = Gilk) (208)
uv

Substantial savings can be achieved by exploiting the 8-
fold permutational index symmetry of the two-electron
integrals.%z’%4 This conventional procedure requires the
intermediate storage of n*/4 half-transformed integrals, and
along with the storage of the n*/8 AO integrals and n*/8 MO
integrals (ignoring any numerical sparsity in these arrays)
amounts to 250 GB and 1.27 TB for 500 and 750 basis
functions, respectively. Abelian point group symmetry adds a
further reduction factor of approximately the order of the

point group. Even with TB hard disks, the initial sorting and
the transposition step requires at least one, relatively slow,
random access I/O step.

In many cases, it is necessary to perform the four-index
transformation for only a subset of all MO integrals with up to
n, external MO indices required. If o denotes the number of
internal orbitals occupied in the MCSCF or reference wave
function, the number of required MO integrals is O(o*™"n"™)
and the number of the half-transformed integrals is O(0°n”) for
ne = {0,1}, O(on®) for n, = {2,3}, and O(n"*) for n, = 4. The
number of integrals determines whether a particular subset must
be stored in external storage (requiring 1/O), distributed in
memory across the entire machine (requiring internode com-
munications), or replicated on each of the nodes (requiring local
memory).

Integral-direct four-index transformations skip the separate
AO integral evaluation step, and evaluate and process the AO
integrals directly as needed. Thus the first half-transformation in
the AO-driven procedure is replaced by four nested loops over
shell-blocks, thereby computing and processing batches of shell
quadruples. The memory requirement of O(s’n”), where s
denotes the number of basis functions per shell block, can be
further reduced to O(s’n) bg partially discarding the permuta-
tional index symmetry®*”**® and computing certain AO inte-
grals more than once. This allows the first half-transformation
to be split into two quarter-transformations, so that the latter
step can operate on subsets of the first quarter-transformed
integrals, at the expense of a 4-fold redundant integral
evaluation. The number of half-transformed integrals remains
unaffected.

A variant of the four-index transformation, which is better
suited to prescreening techniques, has been proposed by
Taylor.*”” Coulomb and exchange operator matrices are directly
assembled from the AO integrals and subsequently transformed
to the MO basis to yield the final MO integrals.

Iﬁi = Y CaCu(uvlxd) = Y DY (uvld) (209)
KA KA

KZ} = Y CCaluv|icd) = ¥ DX (uv|xd) (210)
VK uv

The formal scaling of O(1n®) appears very unfavorable compared
to the standard algorithm. However, density matrices are more
localized than MO coefficients. By using eflicient prescreening
techniques based upon the maximum density matrix element I/,
along with precomputed estimates of the AO integrals per shell
block using the Cauchy—Schwartz inequality

[(uvd)| = |(uvluv) 2| (alkd)] (211)

the number of integrals may be reduced asymptotically to O(n”)
for extended molecules, and hence the overall scaling reduces to
O(n™) for the J and K matrix construction. A similar screening,
based on MO coeflicients, is also applicable to AO-direct
implementations of the standard scheme.®*®

Another approach is based on use of the resolution of the
identity (RI) or density fitting methods,*'°'? i.e., approximat-
ing one- and two-center orbital products by a one-center auxiliary

basis yp

(v]icd) » 1% (uv[P)(PIQ) " (QxA) (212)
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For partially transformed two-external integrals

(ailbj) = Y, Bp.aiBp (213)
P
(ablij) = Y, BpaBp,j (214)
P
BP,P‘? = % [(P|Q)71/2}PQ Z C/Ap Z Cv,q(QLU'V) (215)
u v

the construction of the intermediate quantities Bp,, requires
O(n’N,uy) operations and O(n°N,,) storage. The final step to
transform the intermediates to the final MO integrals requires
0(0*n*N,y) operations. Auxiliary (RI) basis sets for different
purposes have been optimized which scale linearly with the basis
set size; typically N,,, &~ 3n.

A closely related approach initially proposed by Beebe and
Linderberg™” is the Cholesky decomposition (CD). The positive
semidefinite two-electron integral array V is written as a matrix
product of the lower triangular supermatrix L

(uv|io) =V =1LL" = ¥ Ly «Liox (216)
K

The expression is exact if the L matrix (or Cholesky factor)
contains the full n(n + 1)/2 columns. This would result in an
effort of O(n®) for the construction of L followed by another
O(n®) step to obtain the final integrals. The error of an expansion
up to M columns is given in terms of the residual matrix elements
DM/M/,A(I

M
D%/,/lv = |(/’“/MU)_ Z L/,w,KL/lu,K
K=1

= 1/D/Al/{1,/AVD%I,lU = I;%?}‘?((D%V’,‘u/v/) = 6
(217)

Since CD is a recursive procedure, it offers a way to truncate the
expansion when the acceptable error is below a given limit; 6 =
10~ * approximately corresponds to the accuracy with optimized
basis sets. In practice, the number of columns M that need to be
included has been found to grow linearly with the basis set size
(M ~ 3n to 10n). Under this assumption, the computational
effort is of the same order as that for the RI methods. The CD
method can be viewed as a scheme to eliminate the redundancy
(or linear dependency) of the one-electron basis function
product space (uv). Therefore, further approximations such as
retaining only one-center product terms (lC—CD)613 or gener-
ating atom-specific (acCD)®'* Cholesky decompositions for the
product densities have been proposed. These, however, are no
longer exact even in the limit of a complete Cholesky decom-
position, but they do offer computational advantages. See ref 55
for a discussion on the relationship between the RI and CD
methods. A critical comparison in terms of accuracy and perfor-
mance can be found in ref 612. Analytical gradients using this
approach are available.®'

The significantly reduced storage requirements for the three-
index intermediates results in this approach being particularly
beneficial when the resulting MO integrals are immediately
processed. The RI ap?roximation has been successfully applied
to MP2°"* and CC2°'® methods, including parallel implementa-
tions,®"” where the auxiliary basis was tuned to reproduce occupied-
virtual orbital products. CD-based variants of CASSCEF,®'®
CASPT2,°" and local MR-CISD*” as well as parallel, integral-
direct, CD schemes®*°~%** have been reported recently.
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2.8.3.2. Integral-Direct MCSCF and MRCI. As discussed in
section 2.2, first-order convergent MCSCF methods require only
the 0- and 1-virtual MO subset integrals, of which there are only
O(0®n) in number. The small number of integrals, the small
memory requirements for intermediate quantities, as well as
additional simplifications for the inactive orbitals makes these
first-order convergent approaches attractive for large basis sets
despite the slow convergence of the orbital optimization and the
associated difficulties related to excited-state optimizations.
Second-order methods require, in addition, the 2-virtual MO
subset integrals as well as one- and two-particle transition density
matrices. The orbital optimization equations may be solved using
a variety of approaches. One approach is to explicitly construct
the gradient and Hessian elements in the MO basis using
eqs 80—86. This requires the appropriate 0-, 1-, and 2-virtual
MO subset of integrals which, in turn, can be computed either
from the stored integrals, from the AO-direct methods discussed
above, or from the Cholesky or RI approximations. Alternatively,
the optimization equations may be solved using iterative sub-
space methods, in which matrix—vector products of the form
Gorb,ork) Gitortk, Gom,estPy and Geggoqp are constructed for
arbitrary expansion vectors k and p. These matrix—vector
products may be computed in operator form using symmetrized
one-index transformed integrals and transition density matrices,***
which in turn may be computed either from explicitly stored
integrals or with AO-direct methods.

In MR-CISD, the contributions of all three- and four-external
MO subset integrals to the w = Hv vector can be formulated
in terms of exchange operator matrices, i.e., the contrac-
tion of densities with (ab|cd) and (ab|ci). These integrals
typically constitute the vast majority of all two-electron
integrals. 3 ~#2207:209

4 = 3 D) (acld) = €' [COCT] )l

VK

(218)

The index p represents a particular occupation and spin coupling
pattern of the internal orbitals (i.e., an internal walk in a GUGA
implementation), and D;, which is composed of the elements of
a subblock of the current trial vector and the coupling coeffi-
cients, assumes the role of a density matrix element. All density
matrix elements can be grouped into as many matrices as there
are internal walks. Rather than transforming the AO integrals
once to the MO basis and storing and accessing them repeatedly
within the matrix—vector product step (the Hamiltonian blocks
are never explicitly constructed), the density matrices are trans-
formed to the AO basis, contracted with the on-the-fly computed
AO integrals, and finally the resulting exchange operator matrices
are transformed from the AO to the MO basis as indicated in
eq 218. The number of D? matrices for ic-MRCI is much smaller
than for uncontracted MRCI, a consequence of the different
number of variationally optimized parameters. This AO-based
approach eliminates the need to store the three- and four-
external subset MO integrals, which then simplifies the trans-
formation and storage steps for the remaining two-electron
integrals.

2.8.3.3. Parallel MCSCF. Although there are several parallel
MCSCEF codes available,*'?'23120~ 122623 they do not necessarily
perform well in terms of scalability or resource requirements.
The MCSCF procedure is composed of three major steps
per macroiteration: (i) partial AO—MO transformation, (ii) CI
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eigenvalue problem, and (iii) solving the wave function correc-
tion equations. Of these, the AO—MO transformation (possibly
integral-direct) is most frequently implemented in parallel. This
is particularly beneficial when the intermediates are completely
kept in (distributed) memory. For large wave function expan-
sions, the CI wave function optimization step may consume a
substantial fraction of the total CPU time and can benefit from
parallelization. For large active spaces, it is imperative to either
recompute the coupling coefficients within each Davidson itera-
tion cycle (e.g, GUGA % and SGUGA®**) or to make use of the
string-based algorithms which operate in a basis of determinants.
By use of the resolution of the identity,

. 1 .
ij = Z hpq<]|qu|k> + 5 Z (pq|rS)<]|quErs - 6qrEpS|k>
Pq Pq

(219)

= Z thO‘EPq“Q + % Z (pq|r5)[2 <j|qu‘k/><kl|Ers|k>
rq P K

qu
- 5qr<f|Eps|k>]

the two-electron coupling coefficients may be expanded as
products of one-electron coupling coefficients. Several variants
of the original scheme*® eq 220, which wrote the determinants in
terms of o and f3 strings (|K) = |[K,Kp)), have been proposed and
implemented.>’”%** An important feature of this approach is that
the contraction of the integral arrays with the one-particle
transition density matrix elements can be cast as a dense
matrix—matrix product, yielding a very efficient computational
kernel that parallelizes readily. A related concept for determi-
nant-based full-Cl uses @, f3 strings and replaces the resolution of
the identity in favor of a more efficient identification of determi-
nant pairs, yielding nonzero coupling coefficients in terms of
reduced lists.”>® Further development of string-based CI has
been directed toward the efficient handling of multiple active
spaces with occupation restrictions, *****¢7>"* retaining flexible
wave function expansions while reducing the expansion space
dimensions compared to traditional complete active spaces.

While the AO—MO transformations dominates for large basis
sets and moderate CI expansions, the iterative optimization steps
become more costly and more resource-consuming with larger
CI expansions. For a recent parallel determinant-based MCSCF
implementation®’ performance data were reported for an 11'2
expansion with 451 basis functions: steps i to iii consume wall
clock time with the ratio 90:1:10. Only the orbital Hessian block
Gorb,orb Was included in step iii. In case of a dominant AO—MO
transformation, a fast and reliable second-order wave function
optimization with a minimum number of expensive four-index
transformations such as the model Hamiltonian approach pro-
posed by Werner”'* is advantageous, although no parallel version
exists to date. The main focus in parallel MCSCF codes has been
on the first two major steps. The combination of large basis set
sizes and large CI expansions gives rise to huge dimensions of the
orbital optimization problem, within which each iteration re-
quires a pass through integrals, densities, and transition densities.
With increasing size of the equations, the iterative solution tends
to take not only more time per iteration but it also often
converges more slowly. With state-averaged MCSCEF, this tech-
nical problem can be even more pronounced.®®

2.8.3.4. Parallel MRCI. The matrix—vector product formation
w = Hv in the direct-CI approach accounts for almost the entire

(220)
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computer time of a CI calculation, and the parallelization effort is
usually directed to this step. Some other steps of the procedure,
such as the operations involving the subspace W and X arrays,
computation of the subspace elements H and S, and computation
of the residual vectors are trivial to parallelize on the basis of the
distributed storage of the subspace arrays. With the appropriate
partitioning of the two-electron integrals and of the vectors wand
v, the entire workload can be split into an almost arbitrary
number of tasks.”***!'¥%31636%29 The computational efficiency of
MRCI implementations derives from the ability (i) to efficiently
evaluate the coupling coefficients and (ii) to contract them with
the corresponding integrals and trial vector coefficients in terms
of efficient vectorizable matrix—vector and matrix—matrix op-
erations. There are three major variants of such schemes:
the graphical unitary group approach (GUGA),**® the sym-
metric group §raphical approach (SGGA),***° and string-based
CL*25370%36 Both GUGA and SGGA operate in a basis of spin-
adapted configurations while string-based CI employs a basis of
Slater determinants. GUGA and SGGA are typically limited to
MR-CISD expansions since they exploit the simplicity of the
coupling coefficients in the two-electron external orbital space
while providing efficient means to evaluate the internal coupling
coefficients.® Unlike GUGA, the closely related SGGA method
does not explicitly incorporate spin-coupling information into
the graphical representation of the configuration space. String-
based CI is particularly well suited for full-CI because the
insertion of the resolution of the identity does not introduce
additional intermediate determinants (i.e,, ¥ € {j,k} in eq 220).
Also a priori configuration selection schemes such as ORMAS
and GASCI, which closely resemble direct products of full-CI
subspaces, are implemented in terms of string-based CI, although
in this case the intermediate states k' extend the underlying
determinant space. As discussed in more detail below, relativistic
two- and four-component MCSCF and MRCI methods are more
frequently represented in a basis of determinants than in terms of
CSFs, although the choice is of a technical nature. Implementa-
tions of parallel MRCI code 10 years and older are currently only
of historical or conceptual interest because the computational
hardware architecture has changed dramatically, particularly at
the higher end supercomputer level. Nevertheless it is safe to
state that there are several very promising determinant-based
implementations of full-CI**®*"~ %3493 and GASCI*’®%* with
up to 60 billion determinants for calculations on diatomics.>%*’
For unitary and symmetric group based implementations
COLUMBUS""® and MOLPRO'*° are among the most popular
general parallel uncontracted and internally contracted MR-
CISD codes, respectively. Both codes have been applied to the
notoriously difficult chromium dimer potential curve. The largest
uncontracted expansion reported is about 2.8 billion CSFs,**®
and the largest contracted expansion reported is about 147
million variational parameters and corresponds to an underlying
uncontracted expansion space of about 10.2 billion®* CSFs.
Another GUGA-CI code with less favorable parallel scaling
properties has been recently described.®** As was demonstrated
in the application of DFT/MRCI on S-carotenes,**" individually
selected MRCI implementations tend to scale considerably
worse than the MR-CISD expansions because of the unfavorable
memory access patterns, cache misses, and poor load balancing.
This method®** involves the approximate treatment of dynamical
electron correlation with DFT by empirically modifying selected
CI matrix elements, while near-degeneracy effects were treated
by configuration interaction. Since individually selected MRCI
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implementations compute the CI matrix elements indepen-
dently, this merges well with the DFT/MRCI approach, while
the computational effort is significantly reduced due to the
drastically decreased size of the variational CSF space. Parallel
scaling of some full-CI®®" and GASCI®*® implementations was
reported to be sensitive to I/O for large expansions. This is
because the subspace expansion vectors were stored on disk, and,
although computationally inexpensive, the construction of the
subspace representations, along with the subspace contractions
and other subspace operations, are I/O bound.

2.8.3.5. Parallel MCSCF Derivatives, MR-CISD Gradients,
and Nonadiabatic Coupling. For the single-state MCSCF
gradient, the Fock matrix, 1-RDM, and 2-RDM in the MO basis
are computed as part of the normal iterative procedure. These
arrays from the final MCSCEF iteration are then back-transformed
to the AO basis according to eq 137. This may be done in a
parallel implementation, in analogy to the two-electron repulsion
integral transformation, with two main differences. One is the
trivial observation that the roles of the AO and MO indices are
interchanged, which is easily accounted for by transposing the
orbital coefficient arrays within the procedure. The other is that
the MO density matrix involves only occupied orbital indices, so
the total array storage is usually small enough to be replicated as
necessary on multiple nodes without bandwidth or total storage
concerns. This allows the larger AO arrays to be computed in
independent blocks on various nodes without a prior sorting
step. These AO arrays are then used as input to the final gradient
computation step that implements the derivative contractions of
eq 136. In a parallel implementation, this involves sorting the AO
arrays into shell blocks, distribution of those shell blocks to the
compute nodes, computation of the set of derivative integrals for
those shell blocks, and finally the accumulation of the gradient
contributions. The partial gradient contributions from the var-
ious compute nodes are then globally summed after all shell
blocks have been computed.

The state-averaged MCSCEF gradients additionally involve the
solution of the linear equations of eq 148 and the effective two-
particle density construction in eq 151. These steps are required
for each state for which the gradient is being computed. After the
effective density matrices are constructed, the remaining steps
are identical to the single-state MCSCF case. In the back-
transformation step, if the density matrix distributions for all of
the states are considered together, then there are either a larger
number of tasks than in the single-state case, or if the distribu-
tions are grouped together, the tasks are larger than in the single-
state case; both situations are beneficial to parallel efficiency. In
the AO contraction step, there is the further choice of computing
the derivative integrals redundantly for each state (resulting in a
larger number of tasks with less local memory requirements), or
of grouping together the shell blocks of density matrices for all
the states of interest and performing the contractions of eq 152
with the unique set of derivative integrals.

The evaluation of the analytic gradients for MRCI wave
functions consists of the following major steps. First, after the
CI energy and wave function are computed, the CI 1-RDM and
2-RDM are constructed. In a parallel implementation, this step is
very similar to a single iteration of the wave function optimization
procedure and requires a comparable amount of effort. The CSF
expansion coefficients are combined with the coupling coefhi-
cients to produce the density matrix elements. The density
elements are generally stored either on external disk or in
distributed memory. Next, the CI 1-RDM and 2-RDM are
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combined with the integrals to compute the MO Fock matrix
according to eq 82. Those elements are then used to compute the
Cl orbital rotation gradient. This may be accomplished by sorting
simultaneously the integrals and density matrices by distribu-
tions, and the Fock matrix elements are computed as the
summation of the matrix—matrix products across all of the nodes

F;Zj _ g ;g;;d;tr(ci,j) _ Z gstdst(ci,j)

st

(221)

This results in good memory locality while retaining an efficient
computational kernel. In multiple state calculations, these com-
putations can be distributed independently of the state index j,
resulting in a larger overall number of tasks, or all of the (st)
distributions with all states of interest can be treated together
with the same number of tasks but with more computation within
each task. Once the CI Fock matrices are available, the remaining
steps are analogous to those of the state-averaged gradient
procedure discussed above.

The parallel nonadiabatic coupling computation is almost
entirely analogous to the corresponding analytic gradient com-
putation steps. After the energy denominators are factored into
the effective density matrices, the computational equations are
almost identical to those of the analytic gradient procedure (i.e.,
either the state-averaged MCSCF or multiple-state MRCI). The
only new quantity required in eq 179 is the skew-symmetric one-
particle transition density matrix, the construction and transfor-
mation of which is a trivial operation with no significant parallel
consequences.

In contrast to the evaluation of analytical gradients, the
evaluation of analytical geometric second derivatives even in
the favorable case of a variational CASSCF wave function requires
the solution of ~3N,;,m, coupled-perturbed MCSCF equations.
Integral-direct approaches are 4Preferred to prevent a memory
storage or disk I/O bottleneck.”” Recently, Dudley et al. reported
an integral-direct parallel implementation of analytical geometric
second $rivatives of CASSCEF wave functions with good parallel
scaling.

3. APPLICATIONS

In this section, some applications of the methods in this review
are discussed. A complete overview of the several hundred
applications is certainly out of the scope of the present review;
our aim is rather to show the potential and applicability of the
different methods and techniques and, by discussing some
representative calculations, to help the reader to select the
appropriate approach for particular molecular systems.

Multireference methods are generally necessary for the de-
scription of potential energy surfaces, in particular when a wide
range of the coordinate space is considered. Typical examples are
the calculation of vibrational spectra including higher vibrational
states, chemical reactions, and photochemistry. Additionally,
excited states very often require the flexibility of a multireference
description, even near equilibrium geometries. Furthermore,
multireference methods are certainly needed to describe weak
bonds and transition metal complexes characterized by nearby
electronic states.

The applications in this section will be discussed from two
perspectives. First in section 3.1, a survey is presented of typical
applications for the methods described in section 2. Applications
using the size-consistency corrected methods, approximate CI
methods, and relativistic methods are discussed. Then in sections
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3.2 and 3.3 a molecule-oriented overview is given. Specific
applications are described, and the strengths and weaknesses of
the multireference methods are discussed. Finally, in section 3.4
some general aspects of the choice of molecular orbitals are
discussed.

3.1. Overview of the Application Fields of Various MR
Methods

3.1.1. Size-Consistency Corrected Methods. Without
size-consistency corrections, MRCI results can be biased due
to the change of the correlation energy across a PES. Therefore,
since the beginning of MRCI calculations, some kind of David-
son-type correction has been applied. Examples include the
works by the groups of Buenker and Peyerimhoff (see, e.g., refs
82, 89—91, and 96), by Bauschlicher and co-workers (see, e.g,,
refs 97 and 645—647), by Schwenke and Truhlar,”® and by
Hogrevegg’égof693 or the newer results by Werner et al. (see, e.g,,
refs 105, 648, and 649). A very recent, high-accuracy calculation
on the vibrational levels of LiH by Holka et al.%* also shows the
importance of size-consistency corrections.

In a certain sense, CEPA type methods are preferable over the
Davidson-type corrections. Indeed, the size-consistency cor-
rected methods are widely used in several fields of chemistry.
These include calculation of potential energy surfaces, associated
vibrational and rotational spectra, excited states and associated
spectroscopy, reaction mechanism, properties of transition metal
compounds, molecules with heavy elements, noble gas com-
plexes, and reaction control. These methods often serve as a
source for benchmarks in studies where lower level methods,
such as DFT or MP2, are used as the main method. They are also
used to benchmark high-level single-reference calculations, such
as CCSD(T), in cases where eventual multireference effects are
significant. The most popular methods are MR-ACPF and MR-
AQCC, followed by MCCEPA. There is no clear preference in
the literature of applications between MR-ACPF and MR-
AQCC, and often they are used together. QDVPT was used
for several studies shortly after it appeared (e.g, for conjugated
polyenes®"*?), but much less recently. Different versions of
MC-CPA have been used in calculations mostly on diatomic
molecules of d- and p-shell filled metals, such as GaH or TiCl,
concentrating on both ground and low-lying excited states, 5365
Interestingly, two advanced versions, MR-CEPA and MR-(SC)*-
CI, have received little attention in applications (one example is
discussed as follows).

The popularity of the MR-ACPF and MR-AQCC methods
is clearly due to their simplicity, the close relation to MRCI,
the availability of analytic gradients, and, perhaps most
importantly, their availability in popular program systems
(COLUMBUS,'**'** MOLPRO,"*® and MOLCAS'**). MC-CEPA
has been implemented into the Bochum suite of codes'>*'®~'* with
the PNO approximation,">'® and this enables its application to larger
molecules.

To obtain accurate potential energy surfaces, it is apparent that
the MRCI method without the correction for size-consistency
error will not provide the necessary accuracy. Therefore, the
CEPA-type methods are used in most cases. A large number of
applications on diatomic molecules, including the study of their
excited states, can be found in the literature. This includes a
systematic studsy of the homonuclear diatomic molecules by
Miiller et al,**> the N, molecule by Gdanitz,°*° and the Be,
dimer by Fusti-Molnar and Szalay,161 Gdanitz,>” and Martin.**®
All of these studies used MR-ACPF and/or MR-AQCC methods.

Van de Bovenkamp and van Duijneveldt®® used the MC-CEPA
method in an often-cited, systematic study of He,. Miiller®
recently used the MR-AQCC method to study the long-standing
Cr, problem.

Ozone has been investigated extensively by multireference
methods. Miiller et al.*® calculated the energy difference be-
tween the open and the ring isomers of ozone, as well as the
dissociation energy, with MR-AQCC using up to quintuple-zeta
basis sets and basis extrapolation. MR-AQCC has been also used
to obtain accurate three-dimensional potential energy surface by
the group of Schinke.®*"**> The complete three-dimensional
global surface has been constructed using basis sets up to quad-
ruple-zeta quality and basis set extrapolation. Vibrational levels,
and, in particular, the dissociation channel were studied. Re-
cently, Holka et al°® extended these calculations, and some
parts of the ozone surface were calculated with even larger
basis sets.

A very accurate PES has been constructed by Barletta et al.®**
for the water molecule along the bending coordinate up to
dissociation. The basic surface is obtained with the ic-MR-AQCC
method, and corrections for core-correlation, relativistic effects,
infinite basis set have been applied.

He, has already been discussed in connection with diatomic
molecules. Other rare gas molecules were also treated by MR-
ACPF (Ar—CO and Ar, by Jansen,®® neutral XeF by Schroder
etal®*®) and by MR-AQCC (HArF and HKrF by Chaban et al. %),
Both MR-ACPF and MR-AQCC (in connection with the ic
implementation in MOLPRO) was suggested for “the theoretical
study of neutral rare-gas comgounds for organic chemists”.%*®

Electron collision of Cl,,°®® HBr, and DBr®”® were studied
using the MR-AQCC method. These surfaces were found to
describe accurately the low-energy electron—HBr collision
dynamics.%”°

MR-AQCC has been used for method calibration in regard of
the PuO3* by Ismail et al.*”! This work extends the application
range of the CEPA-type methods even to the f-shell metals
(actinides).

To simulate the HCN-HNC isomerization in a laser-con-
trolled pump—dump scheme, Jakubetz and Lan®"* calculated the
three-dimensional ground-state potential energy and dipole
surfaces with the MR-AQCC method. They showed that it is
possible to prepare a pulse that brings the molecule from the
HCN ground vibrational state to HNC excited bending states.

In cases where DFT or low-level ab initio methods are often
sufficient to describe preparative chemistry, MR-AQCC has been
used to describe intermediates (see, e.g., the work of Creamer
et al.%”® on dioxirane and its substituted counterparts) or to
characterize unstable species (see, e.g., Pasinszki et al.o).

Other applications include PESs for excited-state dynamics,
but these will be discussed separately in section 3.2.

Finally, some applications of MC-CEPA are given since these
are somewhat differerent from those of MR-ACPF and MR-
AQCC, due, in particular, to the use of PNO formalism which
allows application to larger systems. It was mostly used to
describe oxides (e.g, ZnO) and their surfaces and processes
thereon (see, e.g., ref 675). There are spectroscopy applications
in the literature,%”® as well.

Applications with explicit higher excitation corrections to
MRCI are rare because of higher costs and also because of the
lack of availability within popular program systems. An exception
is the accurate diatomic potential energy curves obtained with the
CEEIS method.'*? 24293
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3.1.2. Approximate Cl Methods. Due to their cost-effective
nature, approximate CI methods are indeed very popular in
applications. Most common are the ic-MRCI method of Werner
and Knowles**'* and the MRD-CI method (and program) by
the group of Buenker and Peyerimhoff.”*~>7®

Over 1500 application papers cite the papers of Werner and
Knowles®**'* describing the ic-MRCI method. Some of these
use size-consistency-corrected MR-AQCC or MR-ACPF and
have previously been discussed. Typical applications mostly
include determination of potential energy surfaces for spectros-
copy or the study of reaction mechanism. The most cited
applications are the water surface by Partridge and Schwenke,®””
the transition state for the H, + F and the CI + HD reactions by
Manolopoulos et al,”*” properties of lanthanide compounds
by Dolg et al,>>* OH + Ar as well as CN + He potential energy
surface and quantum scattering thereon,”**®®! the structure of
alkaline-earth dihalides,®®? the correlation energy of %old,683 the
accurate enthalpy of formation of OH by Ruscic et al,*** HSO by
Xantheas and Dunning,685 and the low-lying states of CIOZ.686 ic
MRCI was also used in photodynamics (see, e.g., ref 687), the
singlet—triplet splitting in benzyne,”®® and many more. Con-
cerning the “very accurate” regime, the magnitude of the error
arising from the internal contraction remains unclear.

Individually selected CI methods, in particular the MRD-CI
method of Buenker and Peyerimhoff,*”*~ 7% have also been used
mainly in the field of excited states (spectroscopy,”>>”* includ-
ing nonadiabatic couplings,és'9 photodissociation,778 etc.), but
they have also been used for the determination of molecular
structure, and reaction mechanisms. Hogreve successfully used
this procedure to calculate the structure and properties of
molecular ions including the ion of helium dimer” and trimer,690
the dication of carbon trimer®" and carbon dioxide,*** as well as
highly charged atoms.*”® The new version in DIESEL-CI opened
the way for organic chemistry applications.”*~ %

3.1.3. Relativistic Calculations. The most popular ap-
proach to deal with the inclusion of scalar-relativistic effects
has been the use of relativistic pseudopotentials in otherwise
nonrelativistic calculations, serving both the purpose of reducing
the computational effort by freezing the core—electrons and
retaining the well-developed nonrelativistic machinery. For light
elements, a posteriori perturbational corrections for the mass-
velocity and Darwin terms based on the nonrelativistic electron
density are frequently applied. These applications are primarily
concerned with molecular structure and energetics of com-
pounds containing one or more d-transition metal, lanthanide
or actinide elements, and, to lesser extent, the main group post-f
elements, where the relativistic contraction has substantial im-
pact on the chemical properties. This work has triggered the
development of systematic basis set series for relativistic pseu-
dopotential calculations in the spirit of the correlation-consistent
basis sets.”>>*” Many conventional MRCI studies of transition
metal compounds followed this approach.%%

For the spectroscopic properties of the heavier elements, the
inclusion of spin-orbit coupling is imperative. Until recently, the
primary method of choice has been RECPs with spin-orbit
potentials in combination with two-component spin-orbit CI
based on nonrelativistically optimized (scalar) molecular orbi-
tals. The spectroscopy of actinyl ions (AcO3", Ac = U, Np, Py,
Am) including intensities was of particular interest in recent
years,” %7 while early spin-orbit CI calculations focused on
main group dimers and hydrides.”*#7°%%*7% The analysis of
the X—A electronic spectrum of Ags and the presence of

Jahn—Teller effects has also been addressed recently.””” On
the basis of spin-orbit RECPs or ECPs combined with AMFI
spin-orbit integrals, two-step approaches assuming some degree
of separability of electron correlation and spin-orbit couplin
have been applied to the study of the spectroscopy of iodine,”
structure optimizations and reaction energies of actinyl ions in
aqueous solution,”” or the spectroscopy of ' Ag/Ag*. The
AMFI/DKH approach integrates well with two-component
spin-orbit CI and offers a route to all-electron spin-orbit coupling
treatments to both one- and two-step approaches. Yet, Cl-based
applications are limited to small molecules and atoms.”"' The
two-step variants of the DFT/MRCI method have been found to
face difficulties in selecting the appropriate CSF space to give a
balanced treatment of spin-polarization. The recently implemen-
ted one-step approach appears more reliable, and application to
large molecular systems, such as models of f3-carotenes®*' or
porphyrins,”*? is possible.

Relativistic two-component approaches have been quite suc-
cessful approximations to the four-component methods, pro-
vided the innermost core orbitals of the heavy atoms are kept
inactive. In general, excitation energies, bond lengths, and
vibrational frequencies are obtained with high accuracy at sub-
stantially lower cost.”""

Due to their simpler structure, fully relativistic four-compo-
nent MRCI codes have been implemented for some time. Yet,
the combination of large primitive basis sets and invariably huge
configuration spaces has been a tremendous obstacle, and early
applications have been of limited nature (UF@713 PtH,”"* and
HX, X = F, Cl, Br, I, At "*®). With the development of efficient,
parallel CI codes, new possibilities exist to treat small systems
more accurately (RbYb,”*® BiH,*** and I3 7"7).

For the computation of dissociation energies, harmonic vibra-
tional frequencies, equilibrium distances for ground and excited
states (independent of the choice of a high-quality SO-RECPS,
AMFI/DKH based SO-MRCI, or four-component MRCI
treatments), it is important to include sufficient valence electron
correlation and, hence, to supply a valence basis with sufficiently
high angular momentum functions. Many calculations are far
from converged with respect to basis set and correlation
treatment and thus rely on error cancellation effects to achieve
agreement with experimental data. Only recently have sufh-
cient theoretical data been reported®”® from four-component
MCSCF/MRCI calculations on UQ, that furnish a solid basis for
comparison with the more approximate data from one-step SO-
MRCI/RECPs’*® (14 valence electrons correlated) and two-step
SO-CASPT2"" (14 valence electrons plus 10 semicore electrons
correlated) methods. Initially, the SO-MRCI and the four-
component MRCI calculations are in excellent agreement for
valence electron correlation, and they find a ground state of
ungerade symmetry (€ = 2u). The SO-CASPT?2 calculations on
the other hand disagree by about 1500 cm ™" for excited states of
ungerade symmetry. Upon including an additional 10 semicore
electrons in the four-component-MRCI correlation treatment,
and improving the basis set with g and & functions, the difference
reduces to about 900 cm™ . Four-component CC calculations
are in agreement with these data.”*°

These findings suggest that (i) the additivity assumption of
two-step approaches does not generally hold and may introduce
error of the order of up to several thousand cm ™" and (ii) valence
electron correlation alone is insufficient to obtain converged results.

Molecules containing second and third row transition metals
are particularly difficult to treat since spin-orbit coupling and

158 dx.doi.org/10.1021/cr200137a [Chem. Rev. 2012, 112, 108-181



Chemical Reviews

electron correlation induce coupling of atomic states with
different d-shell orbital occupation. Large differential electron
correlation effects are typical, ruling out the practical use of any
single-reference electron correlation method. Molecular com-
pounds MeX (Me = transition metal, X = F, Cl, Br, I, O, H) are
frequently studied as prototype models for the M—X chemical
bonds.***”*' Large spin-orbit coupling, and mixing of ionic and
covalent states upon bond elongation, gives rise to a delicate
balance between spin-orbit coupling and electron correlation
effects; the computed results are sensitive to both the choice of
the molecular orbitals and to the parametrization details of
the RECPs.

The f-elements (lanthanides and actinides) may contain a
significant number of unpaired f electrons, causing narrow bands
of excited states (for a review, see ref 722). For CeQ, about 16
excited states within 4500 cm ™' are reported. For the lantha-
nides, the 4f electrons are spatially well separated from the
partially filled valence shell so that large-core pseudopotentials
(including the 4f electrons) may produce good results.”**”** In
cases where the excited states are not well separated, one-step
SO-CI or uncontracted two-step SO-CI methods are adequate.
For the early actinides, the 5f orbitals contribute to the chemical
bond, and thus they cannot be neglected. On the basis of SO-
CASPT? calculations,”’* the highest bond order in the periodic
system, a quintuple designation, has been assigned to U,.
The actinyl compounds (UOﬁJr, NpO?, PuOﬁJr) containing
one to two unpaired f electrons have been studied by several
methods. They are characterized by a ground-state multiplet of f
states, starting with the neptonyl ion. They display low-lying
charge-transfer states, and the density of states is considerably
lower than for the corresponding lanthanide compounds. The
position of the charge-transfer state does not seem to be related
to the number of open f shells. The low-lying excited states
corresponding to different f-electron distributions are consis-
tently produced by different methods—differences clearly occur
for higher excited and especially CT states.

As has been shown by Vallet et al,”® spin-orbit coupling
effects can change the thermodynamics of a set of redox reactions
for the early actinides. The reduction of actinyl ions from
oxidation state VI to state IV in aqueous solution follows a
two-step mechanism

1 1

(MOZ)(VI) + SH0 — HOMO** (V) + e
1 1

HOMO*" (V) + SH0 — M(OH;")(IV) + 202

The total reaction is endothermic for M = U, while increasingly
exothermic for M = Pu, Np, and Am. For UO3" the spin-orbit
effects reduce the reaction energy by 59 kJ/mol. spin-orbit effects
for the self-exchange electron transfer in binuclear Np(VI)/Np(V)
complexes in solution has been studied in a modified two-step
SO-CI procedure.”**

Another field of interest is the modeling of the spectroscopic
properties of f-element impurities in some crystal environments.
One approach to model the environment uses a variant of the
model potential technique without periodic boundary condi-
tions, the AIMP embedding potential method developed by Seijo
etal,,”**”*" in order to incorporate a polarizable environment. As
AIMP, it integrates well with various electron correlation meth-
ods and it is usually used in combination with MS-CASPT?2 and
MRCIL. Separate calculations for the excited states of Pa*", with

and without its first coordination shell, allow the different effects
of crystal and ligand fields to be discriminated. The crystal field
lifts the atomic degeneracies and quenches SO coupling, while
the total effect yields a significantly more pronounced SO
splitting.

Similar studies on the uranyl and neptunyl ion in the crystal-
line environment of Cs,UO,Cl; have been carried out by
Matsika and Pitzer’*® using the one-step SO-CI method. The
UO,Cl, unit was treated ab initio, the first nearest neighbor shell
was described by all-electron pseudopotentials, and the re-
maining shells were represented by point charges. The size of
the cluster representing the environment was chosen suffi-
ciently large to converge the Madelung potential for the
central Cs,UO,Cl, unit. Only valence electron correlation
was computed.

3.2. Applications in Detail: Energy Gradients, Excited States,
and Nonadiabatic Coupling

The availability of analytic energy gradients for uncontracted
MRCI and MR-AQCC allows the systematic and consistent
treatment at the same computational level for geometry optimi-
zation and for single-point calculations. The applications de-
scribed in this section focus on “difficult” situations which cannot
be described by standard single-reference methods. These cases
contain radical and biradical structures, excited-state minima, and
conical intersection between different electronic states. These
examples will show not only results but also the choices for how
typical reference spaces for the MR-CISD and MR-AQCC
calculations can be constructed. The scope of analytic energy
gradients does not end with the static description of energy
surfaces. Challenging applications can be found in dynamics
simulations where, in classical””® or surface hopping dynamics,”*’
analytic energy gradients and nonadiabatic coupling vectors are
most useful to describe the dynamics “on-the-fly”.”>" The large
variety of available applications requires also a significant selec-
tion in the presentation. Thus the present discussion will focus
on conjugated 7T systems, starting with a short discussion of
vertical electronic excitations, and will continue with a presenta-
tion of radical or biradical structures, nonadiabatic effects, and
photodynamics.

3.2.1. Vertical Excitations in Ethylene and Butadiene.
The calculation of the lowest singlet valence excitation in
ethylene, the V(77—7*) state, has a long history and is full of
difficulties. Without going back in detail into the early days of
ethylene calculations, the major problem observed in SCF and
CISD calculations was the fact that the 77* orbital is too diffuse in
such calculations, resembling more a Rydberg orbital.”>* The
deeper reason for this problem lies in the ionic character of the V
state as described in terms of valence bond theory. Several
successful approaches were chosen to cope with this problem.
One early approach consisted of extensive selected CI at the
MRD-CI level with extrapolation to zero threshold.”** A second
approach followed the general observation that 6— correlation
was important to account for the different relaxation of the o core
in the fields of ionic and covalent valence bond structures.”** The
“all o single excitations from all 77 configurations” (ASSEFAPC)"**
expansion produced remarkably stable and good results that were
practically independent of the type of orbitals used in the CL
Subsequently, a two-step procedure was developed”*® in which
the differential effects of 0—s correlation was used to con-
struct improved molecular orbitals in the first step, and in the
second step MR-CISD and MR-AQCC calculations were used to
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compute global electron correlation energies for the ground and
V states. In this work, the importance of size-consistency con-
tributions as computed at the MR-AQCC level was also noted.
This topic has been taken up recently again in detailed work
analyzing the effect of 0— correlation at the different levels
of theory.”*¢

MRCI calculation of the V(1'By,) state of butadiene poses
problems similar to those of ethylene. CASSCF calculations with
active space spanned by the s orbitals result in too diffuse
character of the V state (see, e.g,, refs 737 and 738). Additionally,
a second excited valence state of A, symmetry is close in energy.
It has a pronounced multireference character and is dipole-
forbidden. The relative order of the two states was, and to some
extent remains, controversial. Theoretical calculations show
similar energies for vertical excitation to the two states. Two-
step MR-CISD and MR-AQCC calculations with orbitals opti-
mized to include 0— electron correlation”>® give ZlAg/l B,
excitation energies of 6.55/6.18 eV. For comparison, CASPT2
calculations”’ give 6.27/6.23 eV, EOM-CCSD (T)"* gives
6.76/6.13 eV, and recent MRCI calculations”*! give 6.07/6.29
eV. A systematic study of excited states of butadiene and trans-2-
propeniminium cation has been reported by Lehtonen et al,,”*
showing good results in terms of excitation energies at several
coupled cluster levels, except for the two multireference lAg
states due to their multireference character as already discussed
above. It is certainly necessary to go beyond selected single-point
calculations and to continue the effort in simulation of optical
spectra similar to the work of Krawczyk et al.”** in order to obtain
a better account of the elusive 21Ag state of butadiene.

3.2.2. p-Benzyne. 1,4-Didehydrobenzene, or p-benzyne, is a
biradical intermediate formed by the Bergman cyclization.”**
There have been numerous studies of the p-benzyne singlet
ground state (1'A,);”*>7*® however, there have been very few
reports of the characterization of the excited states other than the
low-lying triplet. Extensive MR-CISD, MR-AQCC, and MR-
AQCC-LRT calculations were performed for vertical electronic
excitations, including valence and Rydberg states by Wang
et al.”*’ The minimal space for describing the biradical is the
CAS (00*)* expansion consisting of the two in-plane singly
occupied orbitals. The active space was extended in the work of
Wang et al.”*” to a CAS 8° by including the six 77 orbitals and six
electrons into the active subspace as well. Rydberg states were
considered by adding one auxiliary active orbital to represent the
Rydberg 3s orbital. Only single excitations were allowed from the
CAS into the auxiliary space. In total, 32 states were included in
the state-averaged MCSCF calculations. The same space was
used as the reference space for the aforementioned MR-CISD
and MR-AQCC computations. A high density of electronic states
was observed in this biradical system due to the fact that there are
more than 17 states within 7 eV of the ground state, including
two 3s Rydberg states. All excitations, except the ZIAg state,
consist primarily of excitations from the 77 system into the (0,0*)
biradical orbitals. Of the 32 states characterized, 15 were
significantly multiconfigurational, including the ground llAg
state, providing further evidence for the necessity of a multi-
reference approach for p-benzyne.

3.2.3. Stability of the Allyl Wave Function. Symmetry
breaking in radical systems and Hartree—Fock instability is an
interestin% problem and has been investigated over a long period
of time.”*® The allyl radical is an outstanding example in this
respect; for a review on ab initio results see ref 749. Stable wave
functions have been constructed on the basis of a CASSCF(3%)
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Figure 1. Energy variation along the automerization path of cyclobu-
tadiene for the ground state and the three lowest excited states.
Reprinted with permission from ref 754. Copyright 2006, American
Institute of Physics.

calculation” with the active space consisting of the 77 orbitals.
Extensive CASSCF and MR-ACPF calculations have been
performed by Szalay et al.”*' to compute an accurate allyl
geometry and vibrational force field. The stability properties of
the wave functions employed have been tested by performing
geometry optimizations starting from a symmetry-broken struc-
ture of 2-propenyl-type. Use of the CAS(3?) space in CASSCF
and MR-ACPF resulted in a stable wave function with equivalent
CC bonds and C,, symmetry. Increasing the CAS(3?) to CAS-
(4%) and CAS(5’) in the 7t space of the allyl radical led to
interesting results displaying instability and symmetry-breaking
for some expansions. Optimizing the allyl radical at CASSCF(4?)
showed symmetry-breaking, whereas the CASSCF(5>) approach
gave again the correct symmetric geometry. This fact was
explained in terms of a near degeneracy of the 2a, and 3b, 7
orbitals used for the extension of the CAS(3%) to CAS(5%). Both
orbitals are simultaneously needed, and omission of one of them
leads to symmetry-breaking of the CASSCF wave function. The
MR-CISD and MR-ACPF wave functions are always stable, even
with symmetry-broken SCF orbitals.

3.2.4. Automerization in Cyclobutadiene. Cyclobuta-
diene is an interesting molecular system since it is the smallest
neutral organic compound that shows the effect of antiaromati-
city. Another characteristic feature is its strong angular strain.
The D,; ground-state structure is of closed-shell character,
implying that it is well-described by single-reference methods.
However, the transition-state structure has a square geometry
(Dg4y, symmetry) and is an open-shell system, for which a multi-
reference approach is required. The crucial factor determining
the automerization rate is the barrier height for the process
leading from one D,, structure to the equivalent one via the Dy,
saddle point (see Figure 1).

Experimental values for the activation energy vary con-
siderably within the range of 1.6—12 kcal/mol.”>* Multirefe-
rence coupled cluster calculations including single and double
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excitations augmented by noniterative triplet excitations (MR-
CCSD(T)) based on a two-determinant reference gave a barrier
height of 6.6 kcal/mol.”*® Inclusion of zero-point vibrational
energy (ZPVE) lowered this value to 4.0 kcal/mol. CASSCF (4%
calculations result in a barrier of only 2.5 kcal/mol when
ZPVE corrections are applied. MR-AQCC calculations were
performed”* in order to determine the automerization barrier
height and to investigate the properties of the lowest excited
states. Several wave functions were used. At the MCSCEF level, a
CAS(4*) within the 7 space was initiall?r chosen. Additionally, a
restricted direct product (RDP) space’’ consisting of the four
(0ccocc®) and four (OcpOcy®) subspaces was used with each
subspace restricted to singlet spin-coupling of two electrons.
Subsequent MR-AQCC calculations used either a CAS(4*) as
reference space or a space complemented by all configurations
generated by single excitations from the manifold formed by
the four 77 and 77* orbitals into the eight 0* orbitals (CC and
CH), in addition to all configurations generated by single
excitations from the eight o orbitals into the two 7, two 7%
and eight * orbitals. Basis sets up to cc-pVQZ quality**® were
used in single-point calculations, and basis set extrapolations
were also performed. A final barrier height of 6.3 kcal/mol
including ZPE corrections was obtained. Concerning investiga-
tions of excited states, Figure 1 shows that the 13’A2g (see also ref
755) and the lleg states have square-planar equilibrium struc-
tures. The first triplet state is of particular interest because of
its alleged aromatic character. In a recent investigation”*® two
conical intersections between S,/S, were located, one with ionic
character and the other an open-shell tetra-radical.

3.2.5. Diels—Alder Reaction of Ethylene and 1,3-Buta-
diene. The Diels—Alder (DA) reaction of ethylene and buta-
diene is the prototype of a Woodward—Hoffmann-allowed 4s +
2s cycloaddition (for review see, e.g., ref 757). Both concerted
and nonconcerted mechanisms have been discussed. The con-
certed case involves an aromatic boatlike transition structure,
whereas the nonconcerted case involves a biradical intermediate.
A balanced description of biradical and nonradical structures is a
difficult task. Unrestricted DFT calculations suffer from spin
contamination, and CASSCF calculations lack dynamical elec-
tron correlation.”*® The multireference Moller—Plesset calculations
to second order (MRMP2) performed in ref 758 are expected to
give better balanced results. MR-AQCC calculations allow for
the integration of multireference effects and dynamic electron
correlation, and the geometry optimization capabilities have been
used to study both the present DA reaction’ and the Cope
rearrangement of 1,5—hexadiene.760 In the case of the DA
reaction a CAS(6°) was used in CASSCF calculations and as
reference space in the MR-AQCC expansion. Basis sets ranged
from 6-31G* 7" to 6-311G**”%* In summary, the best estimate
for the concerted barrier of 22.2 kcal/mol for the forward
reaction, ethylene + butadiene to cyclohexene, is in good
agreement with the 21.85 kcal/mol deduced by Huang et al.’63
from fits to experimental rate constants using variational transi-
tion state theory. Various stationary points on the biradical
region of the PES were investigated. The energy difference of
6.5 kecal/mol between the concerted transition state and the
biradical fragmentation transition state for the anticonformer is
in line with experimental estimates.

3.2.6. Excited States: Energy Surfaces and Conical
Intersections. Vertical electronic excitations starting in the
ground-state minimum and characterized by single excitations
are usually well-described by single-reference methods such as
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EOM-CC techniques.”** These methods can also be well-suited
for the description of the neighboring Franck—Condon region,
including excited-state minima. In many cases, however, suffi-
cient energy is available from the vertical electronic excitation to
also reach nearby energy barriers; this allows access to regions of
the PES for which significant multireference character occurs and
where the electronic wave function is significantly more compli-
cated. The chemical intuition guiding many theoretical calcula-
tions for the ground state is of little or no help in this situa-
tion, and flexible, unbiased, general multireference methods are
required. For smaller molecules such as the prototypical ethylene
molecule, extended MR-CISD calculations are feasible and
provide accurate results, but with increasing molecular size these
calculations become increasingly more costly. Because of the
pressing need for information on excited-state surfaces for
significantly larger molecules, less flexible methods must be used
such as MRCI with single excitations (MR-CIS) or state-aver-
aged MCSCEF. These methods are significantly faster than MR-
CISD, and enable interesting applications in many areas. How-
ever, it must be noted that the missing dynamical electron
correlation and the ambiguities of selecting the proper active
orbital space may lead to nonnegligible errors.

3.2.6.1. Ethylene: Energy Surfaces and Conical Intersec-
tions. The ethylene molecule plays a fundamental role in the
understanding of photoisomerization processes and, in particu-
lar, the ultrafast energy conversion through nonadiabatic tran-
sitions. Therefore, quantum chemical calculations on vertical
excitations and of important sections of the PESs have a long
history.”*~7%” The vertical excitation to the V state of ethylene
has already been discussed previously. The primary interest in the
excited-state energy surface concentrated on the torsion around
the CC bond; this torsion leads to a degeneracy between the V
and Z valence excited states at 90°”°® but not to an intersec-
tion with the electronic ground state. The first global analysis
of modes that lead excited-state ethylene to intersections with
the ground state was made by Ohmine’® and Freund and
Klessinger.””® In those investigations, the importance of hydro-
gen migration and of CH, pyramidalization for reaching the
S,/S, intersection was demonstrated. Later, Ben-Nun and
Martinez’”" performed extensive studies on the structures and
stabilities of the important conical intersections: the ethylidene,
twisted/pyramidalized, and twisted/H-migration intersections.
They used SA-CASSCF(7*) and single-point ic-MR-CISD cal-
culations using the active space of the CASSCEF calculation as
reference wave function. State-averaging was performed in the
CASSCEF calculations over two and three states, respectively. The
aug-cc-pVDZ basis set**®””> was used, allowing also the descrip-
tion of Rydberg states along additional one-dimensional poten-
tial energy searches. Optimization of the ethylidene and twisted/
pyramidalized intersections led to true minima on the intersec-
tion seam (MXSs), whereas for the twisted/H-migration struc-
ture only a representative structure on the seam was given. The
first two structures were found to be similar in energy, whereas
the latter one was significantly higher in energy. Comparison
of the energy difference between S; and Sy states computed at
the CASSCF level (at which the MXS optimization was
performed) and at MRCI levels suggest possible inconsisten-
cies. The degeneracy of the S;/S, states is fulfilled at the
CASSCEF level by virtue of the MXS optimization performed at
this level. The MR-CISD single-point calculations using the
CASSCF MXS structures show small splittings for the ethy-
lidene and twisted/pyramidalized MXSs, but larger splittings

dx.doi.org/10.1021/cr200137a |Chem. Rev. 2012, 112, 108-181



Chemical Reviews

Planar (D,;) Twisted-orthogonal (D,,)
1.090 1.105
(1.095) 1350 (1.114)
(.03 (1354 [1.101] 111.90
)ﬂ—g (11187
11720 (1118
(117.4%)
[117.1°]

Twisted-pyramid. c.i. (C;)  H-migration c.i. (C))

1.100 1.188
(ii%) (1.105) (1.199)
[1:163] 1.408 [1092] 72.40 \W[1:1801

(1.418)
l [1.399]

1.370

L1 T64.20
93.90 \ 1.107 (1.120) ﬁ;gg (161.19)
©33)  (1112) [1.105] [164.19]
(944  [1.096]

Ethylidene c.i. (C)) C,, Ethylidene c.i. (C;,)

1.099 1.104
(1.118) (1.110)
[1.105] 3020 1.068 [1.097] 28.70
- . (312") (1083) ....... (28.8%) 1.074
""--..._M.'[30.9°] [1.069] \-4,_\" [28.7] (1.078)
I P e [1.064]

\".

1.464 1.460
. 203.80 (1.466)
1.093 [1.448] (205.5°) [1.452]
(1.109) [204.9°]
[1.097]
Staggered Ethylid. (Cs) Eclipsed Ethylid. (C,)
1.096 1.100 1.116
(1.102) (1.105) (1.121)
[1.089] —_— [1.093] 5520 [1105]
- N (25.19)

.

.....

1.495
(1.502) 957 80
[1.488] (252.29)

(1.498)
[1.484] T

1.108 1.105
(1.113) (1.111) [251.79]
[1.100] 105.3° [1.097]

(104.99)

[105.29)

Figure 2. Selected geometrical parameters for the main C,H, structures
studied in the present work optimized at the MR-CISD/ SA—3-CAS(22) /
aug-cc-pVDZ level. Values in parentheses and in square brackets were
obtained at the MR-CISD/SA-3-RDP/aug-cc-pVDZ and MR-CISD/
SA-3-RDP/aug-cc-pVTZ levels, respectively. For the twisted-pyramida-
lized MXS, the pyramidalization angle b is 104.7° (103.5°) [104.4°].
Distances are given in angstroms and angles in degrees. c.i. stands for
conical intersection space. Reprinted with permission from ref 773.
Copyright 2004, American Institute of Physics.

in the case of the twisted/H-migration conical intersection
structure.

MR-CISD calculations have been used by Barbatti et al.””> to
optimize MXSs for ethylene consistently at the correlated level.
These investigations went beyond standard CAS reference
spaces which are limited, for practical reasons, to small active
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orbital spaces. In addition to the (7771*)* CAS space, a RDP space
was constructed for the o orbitals. The RDP space was composed
in this case of 10 orbitals grouped in five subspaces, one for each
o bond, i.e., four [(00*)cy] pairs and one [(00*)cc] pair. Each
(00*) subspace was restricted to singlet pairing. The MCSCF
calculation based on the RDP wave function resulted in localized
orbitals very similar to those obtained in generalized valence
bond (GVB) calculations.”’* The same RDP expansion space
was used as the reference space in the subsequent MR-CISD
calculations. Basis sets used range from aug-cc-pVDZ to aug’-
cc-pVTZ quality, where the prime indicates that the augmen-
ted f functions on the carbon atoms and the augmented d
functions on the hydrogen atoms were omitted. Comparison
of optimized geometries computed with different methods
and basis sets (see Figure 2) showed that the (777*)*> CAS
reference space and the aug-cc-pVDZ basis represented a
good compromise between accuracy and efficiency for calcu-
lations of the valence regions relevant for the photodynamics
within the Sq, S;, and S, states. The topology of the seam
was investigated as well. It has a complex structure in which
all conical intersections presently known for ethylene are
connected.

3.2.6.2. Heterosubstitution in Ethylene. As shown by Michl
and Bonaci¢-Koutecky””® using two-electron two-orbital model
calculations, the gap between the S; and S, states in the
orthogonal structure narrows as the electronegativity difference
between the two central atoms diminishes. This behavior has
important consequences on the photochemical deactivation
mechanism to the ground state because the pyramidalization
and H-migration mechanisms should lose importance relative to
ethylene.

Substitution of one carbon atom in ethylene by silicon leads to
silaethylene. SA-CASSCF and MR-CISD calculations were
performed””® to investigate vertical excitations, conical intersec-
tions, and potential energy curves for selected coordinates. To
take valence and Rydberg states into account, a (7777*)> CAS was
augmented with an auxiliary space describing the 3s and 3p
Rydberg orbitals. Only single excitations were allowed into the
auxiliary space. This expansion space was used in SA-MCSCF
calculations and as the reference space for the MR-CISD expan-
sion. At the MCSCEF level, the Rydberg states were lower in
energy than the 7—s* state, whereas at the MR-CISD and MR-
CISD+Davidson levels the m—s* state was the lowest excited
singlet state. Optimization of conical intersections showed—as
expected—the twisted orthogonal structure to be a MXS.
Twisting of silaethylene around the C—Si bond leads directly
to the MXS.

Isoelectronic substitution of a carbon atom in ethylene with a
nitrogen cation leads to the methaniminium cation CH,NH,".
This is an interesting molecule since it is the first one in the series
of protonated Schiff bases that are used as models for retinal, the
chromosphore of the opsin visual protein.”’” Bonaéié-Koutecky
et al.””® applied the two-electron two-orbital model to the
methaniminium cation and verified the orthogonal MXS struc-
ture by means of direct-CI’”® and MRD-CI calculations. The
calculations showed that at least two excited singlet states are
involved, a 077" and a ;t7t*. In the vertical excitation, the 07T state
is energetically lower than the 777" state. Torsion around the CN
bond leads directly to a crossing with the ground state. This
intersection has also been investigated in a qualitative way’ ™
using the Longuet—Higgins phase change theorem. The vertical
excitations in the methaniminium cation were also investigated
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Figure 3. Potential energy surfaces for the methaniminium cation in
terms of the torsional and CN stretching coordinates. The red arrow
indicates the Franck—Condon excitation.

by Du et al.”®! with a selected MR-CISD approach, confirm-
ing the energetic ordering of the above-mentioned oz* and
ntr states. CASSCF and MR-CISD calculations performed by
Barbatti et al.”*” identified the CN stretching coordinate as another
important degree of freedom in addition to the CN torsion.
Calculations were performed at the SA-CASSCF(4°) level that
included three states into the state-averaging procedure. The
same 4° expansion space was used as reference in MR-CISD
calculations with cc-pVDZ and cc-pVTZ basis sets. Starting in
the Franck—Condon point (see Figure 3), stretching of the CN
bond leads to a crossing between the S,(7—7*) and S, (0—7*)
states at planar geometries. Torsion around the CN bond results
in the familiar intersection between S; and S, states. As discussed
in what follows, dynamics calculations are necessary to obtain an
adequate picture of the true photodynamical processes.

Substitution of one of the hydrogen atoms of ethylene by
a heteroatom also creates a polar 77 bond. For example,
MR-CISD calculations show’®’ that twisting around the CC
bond in fluorethylene leads to a conical intersection at the
twisted orthogonal structure, as was the case for silaethylene
and the methaniminium cation. Analogous calculations have
been performed on the chiral (4-methylcyclohexylidene)
fluoromethane.”®*

3.2.6.3. Formaldehyde. In addition to Rydberg transitions, at
least three valence excited states (n—*, 0—ar*, and 71—71*) are
necessary for the characterization of the vertical electronic
excitation spectrum of formaldehyde. The interactions between
the 7—* and Rydberg states have been investigated in great
detail in the benchmark MRD-CI calculations of Hachey et al.”*®
Because of these strong interactions, the 7—7* state appears to
be elusive and difficult to characterize experimentally. The work
described in ref 786 shows how a larger set of electronic states can
be computed simultaneously at the MR-CISD, MR-CISD+Q,
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and MR-AQCC levels. Five valence states (ground state, n—%,
o0—x*, w—7*, and n*—*) and 10 Rydberg states, n—(3s3p3d)
and r—3s, were computed using an MRCI reference space in
which the Rydberg states were represented by an auxiliary orbital
subspace into which only single excitations were allowed. Standard
MR-CISD and MR-AQCC calculations were performed, and the
interactions of valence and Rydberg states with the CO bond
stretch were analyzed. On the basis of these results, EOM-CCSD
investigations were subsequently performed,”®” computing one-
dimensional potential curves for all vibrational normal modes,
two-dimensional (involving the CO stretch and HCH bend
modes), and three-dimensional (including additionally the out-of-
plane mode) energy surfaces. Using these surfaces, wave packet
dynamics simulations were performed to compute the UV
spectrum. The computed spectrum reproduces well the experi-
mental data in the 7—10 eV region, including highly irregular
features due to strong interactions between the 7—s* state and
the nearby Rydberg states.

The structure of the ;7—s* state is also of interest for other
reasons. The MRD-CI "** and CASPT2 7*® methods predict a
planar structure for this state. However, it was later shown”®” that
the 0—m* and ;T—Jr* states cross and, in combination with a CH,
out-of-plane bend, lead to a conical intersection. As a conse-
quence, the planar 7—s* structure is a saddle point rather than a
true minimum. Full geometry optimization of this state leads to
strong deviation from planarity and strong mixing of the o—*
and T—7T* states.

In contrast to the 7—27* state, the S;(n—*) state is spectro-
scopically well characterized.””® The photodissociation dy-
namics of formaldehyde with respect to the S; state has been
investigated intensively (see, e.g., refs 731 and 791—798).
There are two photodissociation products: H, + CO and H +
HCO. The molecular photoproducts are exclusively obtained
from dissociation on Sy, whereas the radical fragments can
be derived from T, and S,. The dynamics simulations of the
molecular channel have been performed on the S, surface
starting at the corresponding transition state. Beyond the
standard dissociation process that was observed in earlier
investigations, an interesting additional “roaming” hydrogen
atom process was found.””> Along this pathway the molecular
transition state is avoided and radical formation is initiated.
However, this does not lead to full dissociation because of
insufficient energy. Instead, the two fragments orbit around
each other, eventually resulting in hydrogen abstraction and
leading to H, + CO.

Explanation of the dynamics of the radical products is sig-
nificantly more difficult since it involves the three electronic
states S, Sy, and T;. Beyond this fact, long simulation times are
required to describe the singlet—triplet transitions. Straightfor-
ward on-the-fly dynamics is, therefore, precluded in spite of the
small size of the formaldehyde molecule. Instead, global fits to the
potential energy surfaces have been developed. Some examples
include the investigations on the S;/S, conical intersection”””
using density functional theory and CASSCF calculations, and
the calculations on the S;/T,; intersection’*®”” based on the
EOM-CCSD and MRCI methods. Quasiclassical trajectory
calculations have been performed that exclude the S;/S, inter-
section because of energetic reasons’*” and focus instead on the
S1/T) intersection. Wavepacket simulations involving both the
S1/T; and S;/S, crossings using the CASSCF method have been
reported.””® Despite the fact that existing investigations have led
to important insight into the formaldehyde S photodissociation,
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a comprehensive understanding based on accurate dynamics
simulations has yet to be proposed.

3.2.6.4. Excited States of DNA Bases. The study of the UV
spectra, conical intersections, and photophysical deactivation
paths for the DNA and RNA bases leads into the fascinating
field of the photostability of DNA. The lowest electronic excita-
tions are characterized as valence n—sr* and 7—7* states with
varying energetic order depending on the particular nucleobase
investigated, but also depending on the computational method
selected. Because of the increased molecular size of the nucleo-
bases in comparison to the substituted ethylenes discussed
above, MRCI calculations of comparable accuracy are difficult
to perform because of the drastically increased computer times.
The quantum chemical calculations on excited states presented
in the literature are, therefore, dominated by SA-CASSCF and
CASPT?2 calculations. MR-CISD calculations suffer from over-
shooting certain ;7—7* states as already observed for the V state
of ethylene. These errors are significantly reduced for the
strongly distorted MXS structures, and therefore, MR-CISD
has been used mostly for verification purposes of such structures.
MR-CIS (MR-CI plus single excitations) has been applied with
the goal of compensating for inadequacies of the state-averaged
orbital-optimization procedure, and in selected cases this re-
sulted in significant improvements of excitation energies.

UV spectra, energy minima in excited states, conical intersec-
tions, and photodeactivation gaths have been investigated in
detail by several groups.””” *** Energy minima have been
located in both the S; and S, states with usually small energy
barriers of a few tenths of an electronvolt. Reaction paths crossing
these barriers lead, in most cases, to conical intersections at
strongly distorted, ring-puckered structures. As an example,
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Figure 4 shows several reaction paths and types of MXS
structures that have been computed for adenine in ref 803.
The calculations were performed at the SA-3-CASSCF(10'?)
and MR-CIS(5°) levels where the CAS(5°) reference space was
obtained by moving for all stationary points and MXSs all orbitals
with natural occupations larger than 0.9 to the doubly occupied
space and smaller than 0.1 to the virtual space. The Cremer—
Pople parameters® have been used in Figure 4 to describe
systematically the ring-puckered conformations. This figure
illustrates nicely the multitude of different pathways. Assuming
that the photodynamics starts in the lowest 77— state, the most
likely reaction paths lead to the *E and °S; MXSs.

Other examples of successful application of MRCI methods
can be found in the calculations performed bz Matsika on
uracil®' and Kistler and Matsika on cytosine.****%” It was shown
that MRCI calculations on molecules of the size of nucleobases
are possible. The calculations are based on a SA-CASSCF (9")
calculation providing the orbitals for the subsequent MRCI
calculation. The nine orbitals are composed of seven 7, a lone
pair on one N atom (ny), and a lone pair on the O atom (ng).
Three different MRCI expansions were constructed in ref 806.
The first (MRCI1) included only single excitation CSFs gener-
ated from the CAS orbitals. This low-level expansion was used for
MXS searches. The next two expansion sets incorporated
dynamical correlation of the o electrons with the active 7t and
nonbonded electrons. This type of excitation has been shown to
be important for the description of excited states of organic
molecules.”**”** In the MRCIo7r1 expansion, only single excita-
tions were included. The third method (MRClozr2) includes
single excitations from the o orbitals and the oxygen lone pair,
plus single and double excitations from the CAS into the virtual
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Table 3. S, to S; Excitation Energies” of Cytosine Computed
at Three MRCI Levels

method S (T—7*) S,(nn—7%) S3(np—7*)
MRCI1 5.101 (0.067) 5.394 (0.002) 5.888 (0.001)
MRCloml 4.941 S5.131 5.625
MRClomr2 5.136 5.289 5.927
expt %% 4.66

% Data are from ref 806. Values are in electronvolts. * Oscillator strengths
are given in parentheses.

orbitals. The cc-pVDZ basis set was used. These calculations
demonstrate the flexibility in choosing MRCI expansons, and
how this can be largely decoupled from the MCSCF step. Table 3
collects vertical excitation energies computed in ref 806 for the
three expansions. For comgarison, an experimental value avail-
able for aqueous solution®”® is given as well. The results show
that the bright 7—x* state is lowest, followed by two n—i*
states. See ref 806 for details of the geometries and of the
energetic stability of the S; minima and conical intersections.
Using these MRCI methods, three-state conical intersections
could also be located by a three-state seam search.*”’

Cytosine MXS structures have also been optimized at SA-4-
CASSCF(10'*) and MR-CISD(5°) level®” using the 6-31G*
basis. The CASSCF and MR-CISD optimized geometries are
found to be rather similar.

3.2.7. Radical—Radical Reactions. Radical—radical reac-
tions present a special challenge to electronic structure theory.*'°
These reactions typically have no barriers, and hence the
dynamical bottlenecks for these reactions usually occur at large,
2—4 A, separations between the two radical centers. It is well-
known that Hartree—Fock wave functions are poorly suited to
this task; a restricted Hartree—Fock wave function introduces
spurious ionic character at large radical —radical separations, and
an unrestricted Hartree—Fock wave function introduces signifi-
cant spin contamination. Multireference methods, both MRCI
and CASPT2, have been shown to yield accurate results for a
wide variety of radical —radical reactions including combination
reactions,gn*814 disproportionation reactions,ms’ 16 and roam-
ing radical reactions.”*>%'7 %20

3.2.8. Bond Length Comparisons. Experimental R, values
were compared with computed R, values for 20 molecules using
three multireference electronic structure methods, MCSCEF,
MR-CISD, and MR-AQCC by Shepard at al.** Three correla-
tion-consistent orbital basis sets were used, along with CBS
extrapolations, for all of the molecules. These data complement
those computed previously by Helgaker et al.**' and Bak et al.***
with SR methods. The MCSCEF wave function expansions were
all of the direct-product form, including GVB-RCI and CASSCF
expansions. Several trends were observed. The SCF R, values
tend to be shorter than the experimental values, and the MCSCF
values tend to be longer than the experimental values. These
trends were attributed to the ionic contamination of the SCF
wave function and to the corresponding systematic distortion of
the potential energy curve. Upon orbital basis improvement, the
SCF values tend to shorten even further from the experimental
values, while the MCSCEF values shorten toward the experimental
values. For the individual bonds, the MR-CISD R, values tend to
be shorter than the MR-AQCC values, which in turn tend to be
shorter than the MCSCF values. Compared to the previous SR
results, the MCSCF values were roughly comparable to the MP4

165

and CCSD methods, which is more accurate than might be
expected due to the fact that these MCSCF wave functions include
no extra-valence electron correlation effects. This suggests that
static valence correlation effects, such as near degeneracies and the
ability to dissociate correctly to neutral fragments, play an im-
portant role in determining the shape of the potential energy
surface, even near equilibrium structures. The MR-CISD and MR-
AQCC methods predict R, values with an accuracy comparable to,
or better than, the best SR methods (MP4, CCSD, and CCSD-
(T)), despite the fact that triple and higher excitations into the
extra-valence orbital space are included in the SR methods but are
absent in the multireference wave functions. The computed R,
values using the multireference methods tend to be smooth and
monotonic with basis set improvement.

Full-CI wave function R, values were compared for some of
the molecules in this study. This allows some direct comparisons
among the various SR and MR methods without interference
from experimental uncertainties. Overall, the MR-CISD and
MR-AQCC R, values agree very well with the corresponding
full-CI R, values, and the mean errors and standard deviations for
these methods are better than for any of the SR methods. The
MR-AQCC method is seen to have the smallest mean error and
smallest standard deviation of all of the methods. The MCSCF
statistics are seen to be surprisingly good, supporting the premise
that valence correlation effects play a larger role than expected in
determining the shape of potential energy surfaces, even near
equilibrium structures.

The variational nature of the MR-SDCI and MR-AQCC
energies allows the Hellmann—Feynman theorem to be exploited
in the analytic energy gradient computations associated with the
molecular structure optimizations. This is seen to result in a very
efficient analytic energy gradient computation for a wide range of
reference wave function expansion dimensions and for a wide
range of orbital basis sets. The timings for these calculations show
the practical advantage of using variational wave functions for
which the Hellmann—Feynman theorem can be exploited.

3.3. Applications in Detail: Nonadiabatic Dynamics

The availability of analytic energy gradients and nonadiabatic
coupling vectors opens the way to mixed quantum-classical
dynamics simulations (see, e.g, ref 365), for which Tully sur-
face-hopping is probably the most popular form.”*® For the
purpose of this review it is of interest to note that these
calculations are performed on-the-fly,”>' which means that at
each time step of the classical dynamics a full quantum chemical
calculation is performed, including energy gradient and coupling
elements. The advantage of this approach is that all internal
degrees of freedom can be taken into account without any
restrictions since the analytic energy methods automatically
provide the complete derivative vectors along all Cartesian
coordinates. Thus it is not required to preselect any active
internal coordinates as is necessary when energy grids have to
be calculated. The drawback of the on-the-fly method is the large
computational demand, which is even more pronounced by the
fact that a batch of trajectories must be computed in order to
obtain statistically useful results. Thus, when ab initio methods
are used for the quantum chemical part of the calculation,
simulation times are usually restricted to ultrafast processes in
the order of a few picoseconds. Ab initio multiple spawning
(AIMS)""!is an interesting alternative method that combines the
rigor of quantum dynamics with computational efficiency com-
parable to surface-hopping.
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3.3.1. Ethylene Photodynamics. The study of the photo-
chemistry of ethylene gives insights into basic chemical processes
and at the same time serves as a prototype for studying properties
of larger molecules. The structure of the conical S;/S, intersec-
tions, the topology of the intersections seam, and the modes
leading to the seam have been discussed previously in section
3.2.6.1. Extensive photodynamical investigations have been
performed by several groups. AIMS calculations carried out at
the CASSCF(2?) level””"*** nicely demonstrate the combined
torsional and pyramidalization character of the deactivation
paths leading from the Franck—Condon region to the conical
intersection. A lifetime of 180 fs has been deduced from these
simulations. Wavepacket dynamics calculations based on a fitted
potential described in six coordinates (CC torsion, CC stretch,
CH, scissoring, and pyramidalization)®** show a strong coupling
between the torsion and the CC stretching mode, along with a
significant bottleneck in the slow activation of the pyramidaliza-
tion, leading to an overall slow population transfer to the ground
state. Although these simulations illustrate the proper deactiva-
tion paths qualitatively, they predict lifetimes that are much too
long compared to the 20—40 fs values obtained in femtosecond
pump—probe experiments.gzs’826

Surface-hopping dynamics using semiempirical CI methods
are an interesting alternative to the above simulations based on
ab initio methods. Granucci et al.>* used the MINDO/3
method®”” and Fabiano et al.**® used the orthogonalization-
corrected Hamiltonian (OM2) method.** These investigations
confirm the torsional and pyramidalization modes as the main
deactivation mechanism, similar to the observations made in the
ab initio simulations described before. Interestingly, much short-
er lifetimes are reported in these investigations: SO fs in the
MINDO/3 study and 70.8 fs in the OM2 calculations. Semi-
empirical dynamics performed afterwards at the AM1 level**°
with reparameterization of the original AM1 parameters based
on MRCI calculations led again to larger lifetimes of 105—139 fs.**"
Closer analysis of these dynamics indicates® also the importance of
the H-migration and ethylidene regions of the S, /S intersection
seam for the photodeactivation. A possible reason for the
discrepancies between theoretical and experimental predictions
was proposed:’”"**! the energy of the probe pulse for ionization
was not sufficient for the whole course of the dynamics, and the
experiments were actually giving only the time to leave the
observation window rather than that to return to the ground
state. Multiphoton experiments,®***** however, have ruled
out this explanation and reinforced the previous experimental
conclusions.

Recent AIMS calculations performed for ethylene, using
analytic multistate perturbation theory to second-order (MSPT2)
energy gradients®* and numerical finite differences for the
nonadiabatic coupling vector,**® result in a lifetime of 89 fs. This
value is a significant improvement over the previous ab initio
results and shows the sensitivity of the lifetime with respect to the
computational method. Even more accurate calculations are
certainly necessary to resolve completely the puzzle of the
ethylene lifetime.

3.3.2. Ethylene Heterosubstitution: Effect on Photody-
namics. The fact that heterosubstitution in ethylene promotes
the S,/Sy crossing at the twisted orthogonal structure (see
discussion above) may lead to the expectation that the corre-
sponding photodynamical processes should be simpler than
those observed for ethylene. The central torsional mode should
lead the dynamics directly to the conical intersection and thus to
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Enargy (kcalimal)

Figure 5. Schematic energy level diagram for the dissociation of ethyl
radical C,Hs — C,H, + H following excitation to the A-state. Reprinted
with permission from ref 838. Copyright 2009, American Institute of
Physics.

the ground state. However, the situation is not really that
simple.®*® The first reason follows from the fact that not only
the torsional mode but also the central stretching coordinate
defines the intersection space, and a specific combination of
these two modes is required to reach this region. Normally, this
will not be the case at the beginning, and the dynamics will lead
initially to a finite gap (avoided crossing region) rather that to a
crossing (intersection). Usually, several torsional cycles will be
required to reach the intersection seam. E.g, in silaethylene the
90° structure is reached in 10—20 fs. However, the lifetime
computed from surface-hopping dynamics using a MR-CISD(2*
reference) wave function is found to be 124 £s.**” Since the
molecule remains in the excited state longer, sufficient time
is available to activate additional modes. Consequently, other
regions of the crossing seam, different from the ones belonging to
twisted configurations, may actually be accessed during the
return to the ground state. This situation is not unique to the
combination of torsional and stretching modes, but rather occurs
in many other situations such as the ring puckering found
important for the deactivation of DNA nucleobases.

The second reason that deviations from the simple rotor
model occur is competition with other processes. Such cases
were observed in silaethylene®” and methaniminium cation.”**
While one group of the trajectories follows the torsional paths,
another undergoes strong stretches of the central bond connected
with a simultaneous pyramidalization of both terminal groups.

3.3.3. Adiabatic and Nonadiabatic Dissociation of the
Ethyl Radical. The dynamics of the dissociation of the ethyl
radical following excitation to the A state has been studied by
Hostettler et al.**® As Figure S shows, adiabatic dissociation (2)
produces excited-state ethylene and H in competition with
nonadiabatic dissociation (1a). Alternatively, hot ground-state
radicals can be generated followed by unimolecular dissociation
(1b). For the nonadiabatic dynamics calculations, the SA-2-
CASSCF(4”) and MR-CISD(4° reference) methods have been
used. To correctly describe the dissociation of the ethyl radical
into ethylene and hydrogen atom, the four active orbitals contain
three valence orbitals (two 2p orbitals on the carbon atoms and
the 1s orbital on the departing hydrogen atom, forming the
nonbonding singly occupied molecular orbital and the bonding
and antibonding o orbitals) and the 3s Rydberg orbital. The 6-31
++G(d,p) basis set was used. A set of 4956 trajectories was run at
the SA-CASSCEF level for a maximum of 7 ps, and 245 trajectories
were run at the MR-CISD level for a maximum of 1 ps.
When comparing the dynamics results obtained with the two
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methods, the changes in the branching ratio between adiabatic
and nonadiabatic dissociation are illustrative in showing the
effect of the computational level. At the SA-CASSCEF level, only
about half of the trajectories dissociate nonadiabatically; the majority
of the other trajectories follow path 2. At the MRCl level almost 70%
of the trajectories follow the nonadiabatic path, and the remainder is
equally split between paths 1b and 2. A possible explanation for the
dramatic difference in the branching ratio between the two levels of
theory comes from the computed dissociation energy for the
C,H4(A) + H channel that is too low at the SA-CASSCF level
but agrees well with experiment at the MRCI level.

3.3.4. Photostability of DNA/RNA Nucleobases. All
nucleobases show ultrafast radiationless decay to the ground
state within a few picoseconds. These ultrafast deactivation
mechanisms and their related photostability are of great interest
since they are considered to contribute to a natural chemical
defense of the genetic code against damaging photochemically
induced processes in reactive excited states. The structure and
energetic location of the conical intersections responsible for
these ultrafast processes have been discussed previously. To-
gether with ultrafast time-resolved spectroscopy,®*”** these
methods have provided a high degree of detail in the character-
ization of internal conversion processes, suggesting ring pucker-
ing as one major structural theme for the photodeactivation of
nucleobases. Photodynamical simulations have been performed
at the ab initio level using surface-hopping®*>**! ~#44899845 34
AIMS***** techniques for investigating the individual bases. A
summarizing survey was presented with the goal of extracting the
common pattern of the deactivation dynamics.*** Analysis of the
dynamics simulations shows that the purine bases, adenine and
guanine, follow a direct decay proceeding diabatically on the
T—7r* energy surface. These two bases possess the shortest gas-
phase lifetimes among all nucleobases. In contrast, the pyrimidine
bases display much richer deactivation characteristics where also the
n—* state is involved and trapping in S; minima may occur.

In addition to the study of the five nucleobases, the dynamics of
related compounds which serve as nucleobase models, such as 4-amino-
pyrimidine,”* and 2,4-diaminopyrimidine,** has been performed.

This collection of examples should demonstrate the range of
applications available. Advances in the parallel performance of
quantum chemical codes and implementation of quantum me-
chanical/molecular mechanics (QM/MM) methods, in combi-
nation with MCSCF and MRCI methods (see, e.g., refs 851 and
852) will lead to significantly enhanced possibilities allowing
more realistic applications in many important fields of research
where multireference theory is the method of choice.

3.4. Role of the Molecular Orbital Basis

The use of advanced SR and MR electron correlation methods
is invariably tied to the optimization of the one-particle basis in
terms of molecular orbitals separate from the optimization of the
N-electron basis expansion coefficients (Slater determinants,
CSFs). With the exception of full-CI, which by construction
treats all MOs on the same footing, this introduces an implicit
dependence on the choice of molecular orbitals of the results
from the electron correlation methods. In the area effectively covered
by SR methods, due to the formalism there is usually no choice of the
MO basis, which has unfortunately led to the misconception that a
suitable set of MOs can be taken for granted if they satisfy the basic
requirement to cope with possible near-degeneracy effects.

For about 40 years, it has been well-known that natural orbitals
derived from some electron correlation treatment lead to a more
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compact expansion of the CI wave function."*>'® However, the
iterative improvement of the NO basis does not always
converge,853 so that this procedure, although quite helpful, does
not lead to a uniquely defined orbital basis. Thus, the effort to
compute good approximations to the full-CI limit depends on
the choice of the molecular orbitals, and, in the early days of
quantum chemistry, natural orbitals (or related quantities such as
PNOs'*'¢) have been used to reduce the size of the N-particle
space while keepin§ the incompleteness error small (e.g., the
PNO—CI method*™).

Of conceptual importance is the fact that HF wave functions
tend to overestimate the ionic character of a chemical bond. This
leads, e.g., to systematically overestimated harmonic vibrational
frequencies that are typically corrected by empirical methods and
basis set dependent scaling factors.*** More advanced scaling
techniques employ multiple scaling factors depending upon the
internal coordinates (e.g., ref 855). The increased ionic character
is also reflected in the shape of the occupied canonical HF orbitals, so
that subsequent electron correlation treatments must correct for this
orbital bias. In a recent study it has been pointed out that even for
typical single-reference cases, high-level electron-correlation methods
such as CCSD(T) cannot completely compensate for this defect if
the results are extrapolated to the CBS limit.**” For the same set of
molecules, MCSCF/MRCI or MCSCF/MR-AQCC did not suffer
appreciably from ionic contamination.

The notoriously problematic 71—7* singlet states in polyenes,
carbonyl compounds, and other conjugated or aromatic systems
exhibit ionic character, which recently has been shown to be
systematically overestimated even at the MCSCF/MRCI level of
theory when the active space is not flexible enough to incorporate
0— 71 polarization effects.”**

In a basis of orthonormal MOs, a (7777*)* CASSCF calculation
can represent three singlet and one triplet states of A; and By,
symmetry (using D,, irrep labels). If ¢, and ¢+ denote arbitrary
coefficients subject to the orthonormalization constraint (c,;)* +
(cx+)* = 1, these states are (ignoring the core electrons)

1‘P1AE(N) = || + cpx|TFTTH| (222)

ZIPJAS = C”*|ﬂﬁ| — C;T|.7Z*ﬁ*| (223)
1

Wiy (V) = —(|az7*| + |77 224

s, (V) VFO | + |7*7)) (224)

1Wsg (T) = —=(|am*| — |n*7 225

3, (T) ﬁ(l | — [7*7]) (225)

In a basis of orthonormalized atomic p orbitals centered on the two
carbon atoms (pa,pg), the same wave functions can be written as

1 _ _
1‘P1AS(N) = 75(% + o) (|papal + |psPsl)

1
+7§(@ — ¢ )(|paps| + [Papsl) (226)
1
2Py = ﬁ(cn* — ¢x)(|papal + |pspsl)
1
+% ¢z + ¢ )(|paps| + |Paps|) (227)
1
Wy (V) = ﬁ(|PAI7A| — |pspsl) (228)
1
W (T) = %(|PBFA| — |papsl) (229)
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The two singlets of A, symmetry are complementary mixtures of
ionic and covalent VB structures, while the 'B;,, state and its °B,,
counterpart are represented by purely ionic and covalent VB
structures, respectively. Hence, state-specific CASSCF calcula-
tions with the minimum active space yield widely different 7t and
7r* MOs for the ionic V state as opposed to the predominantly
covalent N and T states. Constraining the occupied o core
orbitals to be inactive in the CASSCF optimization prevents
them from being properly polarized for the ionic configurations as
both components share the same core. To allow for ¢ polariza-
tion, 0 to 0* single excitations relative to the |(core)r7T| and
|(core).7t*ﬁ *| determinants are required. The neglect of this
polarization results in 77 and 7* MOs that are too diffuse, and
the ionic components are destabilized.”*®

The vertical excitation energy of the V state has been system-
atically overestimated by ~0.25 eV and a too diffuse character is
predicted by a wide variety of methods focusing on extending the
N-particle expansions (CI,853’733’651'856 EOM-CCSD,”* and
CASPT2 7*), which is unfortunately slowly convergent. The
observation of better results with more compact basis sets®*” is a
direct consequence of preventing too diffuse orbitals by basis set
constraints. Focusing instead on the MO basis leads to the
aforementioned inclusion of 07 polarization, either as furnishing
the final results®*” or as a MO basis optimization step followed by
large-scale MRCI for quantitative predictions.”*> A third possi-
bility involves QDPT or intermediate Hamiltonian theories,**®
constructing a model space from multiple valence states (V state
and states representing 07 polarization effects) such as MS-
CASPT2*? or QD-PC-NEVPT?2,***7*¢ which also corresponds
to an extension of the N-particle space. Results that are in good
agreement with ref 735 have been presented with eight reference
states using the QD-PC-NEVPT?2 approach if limited to valence
excited states.

For the standard 2> CASSCF calculations for ethylene, in
addition to the neglect of 0— polarization effects, the now
energetically too high ionic V state mixes with a near-degenerate
low-lying Rydberg state of the same symmetry, which further
increases the diffuse character of the V state. The degree of
mixing with the Rydberg state depends very much on the choice
of the active space, since it is primarily an artifactual near-
degeneracy effect (experimental data indicate a valencelike V
state). It is important to include 0—7 polarization and dynamic
7—7* correlation during the MO optimization step in order to
suppress both sources of error. QD-PC-NEVPT?2 fails in the
presence of Rydberg valence state mixing because a very large
number of reference states would be required to correct the large
diffuse character of the V state. Optimizing the orbitals with large
RASSCF expansions including sufficient 0— and 7t7t* correla-
tion leads also to qualitatively correct orbitals for the V state, and
subsequent single-state PC-NEVPT?2 results are in good agree-
ment with extended MR-AQCC and MR-CISD results. These
findings reemphasize the importance to closely inspect and
analyze the optimized molecular orbitals. The longer polyenes are
less problematic with respect to T—T* excitations, and a similar
procedure leads to good agreement with the experimental data.”*®

The simultaneous treatment of Rydberg and valence excited
states is of considerable importance in dealing with the photo-
physics of many aromatic heterocycles and carbonyl compounds.
In particular, formaldehyde has been thoroughly investig-
ated”® 7% (cf. section 3.2.6.3); upon elongating the C=0
double bond, the r—* state crosses four different Rydberg
states. This has a profound impact on the observed electronic
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spectrum and is an almost ideal example for intensity borrow-
ing.”*” In terms of efficiency, it is desirable to construct an MO
basis in which each MO describes either a diffuse Rydberg or a
compact valence orbital.”*® Since Rydberg states are essentially
singly charged molecular cations plus a single electron in a diffuse
orbital, it is sufficient to choose reference spaces with at most a
single electron in a Rydberg orbital. Although such a CSF space is
not much larger than the corresponding CSF space for the
valence-state correlation treatment, it is flexible enough for
arbitrary valence/Rydberg state mixing within the N-particle
basis. Even with sophisticated CSF spaces at the MCSCEF level,
it will not be possible to always disentangle Rydberg/valence
orbital mixing at the orbital optimization level; the consequence
is the requirement of extremely large CSF spaces in order to
suppress artifacts. To this end, response methods display the
desirable feature that it is sufficient to optimize the MO basis for
the reference state only. Since the ground state is well-separated
from any Rydberg states, it is easier to suppress the undesirable
valence/Rydberg mixing at the orbital optimization level.

4. SUMMARY AND CONCLUSIONS

We have discussed the relevant aspects of the MCSCF and the
MRCI methods which are generally applicable procedures to
compute approximations to the electronic Schrodinger equation.
These multireference methods share the important asset that
they are not inherently tied to some restricted reference state,
and thus they are applicable to arbitrary electronic states and
molecular geometries. The variational nature of these methods
greatly simplifies the formulation and the implementation of
analytical gradients and nonadiabatic coupling vectors. While
MCSCEF is primarily used to optimize the one-electron basis
functions and to describe static electron correlation effects due to
nearly degenerate electronic states, the subsequent MRCI meth-
od aims at quantitative treatment of dynamical electron correla-
tion. The most prominent restrictions of traditional CI
procedures are the lack of size-consistency and the exponential
growth of the N-particle expansion space. The latter initiated the
development of various approximate CI variants achieving
reductions of the number of variational parameters by CSF
selection, contraction, or reparametrization schemes of various
forms, and also multireference methods that follow completely
different approaches. The size-consistency, or in this context size-
extensivity, error is related to the presence of unlinked clusters in
the truncated CI equations which can be dealt with by inclusion
of (approximate) higher excitation contribution to the energy
expression or equations. In the former case the correction takes
the form of a posteriori corrections or extrapolations of CI
results, while in the latter case a new method is defined. These
new CEPA-type methods do not necessarily deal consistently
with the EPV terms, causing overestimation of the correction.
Also, the applied modifications often ruin the structure of the CI
equation, destroying the possibility of straightforward calculation
of analytic gradients and properties; the central tasks of compu-
tational chemistry, such as the evaluation of critical points on
the PES, is thereby restricted to relatively expensive numerical
gradient evaluation.

The last two decades have witnessed a remarkable develop-
ment of relativistic MCSCF and MRCI methods, and calculations
on general molecules of chemical interest with high accuracy
are becoming feasible. The computational effort is demanding
for both nonrelativistic and, in particular, full four-component
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relativistic multireference methods, and the use of advanced
parallel (super-) computers is inevitable. Hence, the general
current status of parallel computer architectures and the implica-
tions of implementations of multireference methods on
(massively) parallel were discussed. Replacing disk storage by
distributed memory, trading computer time for reduced data
storage requirements, and data-parallel algorithms are important
and common underlying concepts. In particular, schemes that
reduce the exponential growth of the number of variational para-
meters of the FCI expansion to low-order polynomial dependence,
while still maintaining small errors, are of great current interest.

A variety of applications from a selection of different fields
including approximate CI and size-consistency-corrected methods,
applications of multireference methods to excited states, gradients,
and nonadiabatic surface-hopping dynamics, and relativistic quan-
tum chemistry have been discussed. Several illustrative applications
with references to the original works have been included.

Finally, the dependencies and intricacies that can arise from
the separate optimization of the one- and N-particle bases were
discussed. Most notable is the fact that it is difficult for the
electron correlation method to compensate for an inappropriate
one-particle MO basis except at the full-CI limit.

Perspectives on the future of quantum chemical multirefer-
ence methods are not easy to assess. As the results collected in
this review show, multireference methods are indispensible in
many very important application areas. It is also clear that
dynamical electron correlation is necessary to obtain the required
accuracy; i.e., lower level valence-only multireference methods
such as MCSCF are not always satisfactory. In the single-
reference realm, coupled-cluster theory brought about substan-
tial improvement of the quality of the results, and a similar impact
is expected when an all-purpose MRCC method is developed.
Despite large efforts, no such MRCC method exists at the time of
writing this review (see also the review by Lyakh and Bartlett**
in this issue); thus MRCI, and in particular extensivity corrected
versions such as MR-ACPF and MR-AQCC, are the primary
choice for applications. Note also that the MR-CISD (including
MR-ACPF and MR-AQCC) are expected to give closer results to
the hypothetical MRCC level than does SR-CI compared to SR-
CC since a much larger amount of correlation is included with
the MR wave functions. From the technical point of view, the
availability of ever growing computational resources, in terms of
computer power, memory, and storage capabilities, will certainly
continue, albeit the characteristics of the computational hard-
ware are likely to change dramatically; this will have a profound
impact on algorithm choices as the software strives to match the
inherent capabilities of the hardware. Relatively simple data-
parallel and data-local compute kernels, preferentially combined
with on-the-fly computation of large amounts of internal data
(such as integrals and coupling coefficients) followed by im-
mediate contraction to compact representations (e.g., Fock
matrices), are likely to benefit from the upcoming hardware.
More conventional techniques relying on the processing of large
amounts of precomputed data, stored either in distributed
memory (or much worse on external disks), will likely encounter
difficulties in this new environment. Generally, methods that
allow for the reduction of the volume of data to be stored and
manipulated have the most promising potential. The current
revival of interest in multireference methods is due to their many
inherent advantages in chemical applications and also, in part, to
the success in adapting and developing these methods to take
advantage of these new hardware characteristics.
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