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1. INTRODUCTION

The configuration interaction (CI) method is a general
procedure to compute approximate solutions to the electronic
Schr€odinger equation. The wave function is written as a linear
expansion

jΨæ ¼ ∑
Ndim

j¼ 1
cjjjæ ð1Þ

with expansion functions |jæ and expansion coefficients cj. A
common feature of CI methods is that the expansion coefficients
are determined variationally. A trial energy is typically an
expectation value, written as the Rayleigh quotient

Etrial ¼ F ¼ ÆΨjHjΨæ
ÆΨjΨæ

ð2Þ

and the CI energy is determined from the relation ∂F/∂c = 0.
This leads to the standard hermitian eigenvalue equation

Hck ¼ Ekc
k ð3Þ

with the matrix elements Hjl = Æj|H|læ. The ground state
corresponds to the lowest energy solution, and excited states
correspond to higher solutions. Thus the CI method is concep-
tually very general and simple, and therefore it has been used
since the beginning of molecular quantum mechanics. In the
1950s and 1960s it was the primary source of correlated results,
and these calculations showed that electron correlation is essen-
tial to understand certain properties of atoms andmolecules. The
review article by Shavitt1 covers the important aspects of the CI
method up through 1977, and the later reviews by Duch,2

Shavitt,3 Sherrill and Schaefer,4 �Cársky,5 and Karwowski and

Shavitt6 cover important developments through 2003. In this
paper, the important basic aspects of CI methods such as
expansion basis choices, truncation schemes, choice of orbitals,
diagonalization procedures, and size-consistency issues will be
summarized. Recent developments on gradient theory, calcula-
tion of molecular properties, and nonadiabatic coupling between
electronic states, as well as relativistic and spin-orbit effects will
be covered in more detail.

If all possible expansion terms are included in the expansion of
eq 1, then the result is the full-CI wave function. The solutions to
eq 3 in this case correspond to the exact solutions to the
Schr€odinger equation within the given orbital basis. These are
the energies and the wave functions that all approximate orbital-
based electronic structure methods attempt to mimic. The
dimension of the full-CI expansion grows approximately as nN

for N electrons and n molecular orbitals and for N < n.
Consequently in practice, full-CI wave functions can be com-
puted only for small molecular systems and for relatively small
orbital basis sets, but these calculations serve as important
benchmarks to assess the accuracy, reliability, and characteristics
of other approximate methods.

There areNdim linearly independent solutions to eq 3, and, for
ordered sequences of eigenvalues, truncated expansions satisfy
the bounds

Eðfull �CIÞ
k e EðNdimÞ

k ð4Þ
EðNdimÞ
k e EðNdim þ 1Þ

k þ 1 e EðNdimÞ
k þ 1 ð5Þ

The first equation shows that the approximate energies are
always higher than the exact full-CI values, and the second
equation shows that convergence to those values occurs mono-
tonically with increasing wave function flexibility. These relations
allow a correspondence to be established between the exact full-
CI eigenvalues and the eigenvalues from a truncated expansion,
and it allows the convergence of a particular state to the exact
limit to be monitored as a function of the expansion dimension.
In addition, these bounds relations allow the convergence with
respect to orbital basis sets to be assessed and, in some cases,
extrapolated to the complete basis set (CBS) limit. In this
manner, both ground and excited states can be computed, and
given these wave functions, arbitrary expectation values and
transition properties may be evaluated in a straightforward
way. This generality and flexibility are important features of CI
methods. Equations 4 and 5 are satisfied at each molecular
conformation R, and thus these bounds relations apply not just
to isolatedmolecular conformations but also to description of the
behavior of the entire potential energy surfaces (PESs).

In most CI applications, eq 3 is solved simultaneously for both
the wave function expansion coefficients ck and for the energy Ek.
However, consider the situation in which the coefficients are
known. In this case, the energy can be evaluated by considering
only a single row of eq 3.

ðEk �HjjÞckj ¼ ∑
lð6¼ jÞ

Hjlc
k
l ð6Þ

If cj
k 6¼ 0, then Ek may be evaluated with effort that scales only as

the number of nonzero elements in the jth row of the matrix H.
There are only, at most,∼N2n2 nonzero elements in a row of the
H matrix (including even the full-CI H matrix); thus the form
of eq 6 suggests a very economical way to compute an energy,
given the ck from some separate computational procedure.



110 dx.doi.org/10.1021/cr200137a |Chem. Rev. 2012, 112, 108–181

Chemical Reviews REVIEW

This transition-energy formula is the basis for many electronic
structure methods. The coefficients associated with the nonzero
elements of a single row are estimated in some fashion, and then
the energy is evaluated according to eq 6. Several of these
methods are discussed in section 2.

Many electronic structure methods may be characterized as
either single-reference (SR) or multireference (MR) approaches.
In a SR approach, a single Slater determinant is chosen as a
reference function, and some procedure is used to determine the
important Hamiltonian interactions with this reference function.
This typically involves either empirical or a priori selection
procedures that are based on perturbation theory, explicit
diagonalization within small subspaces, and combinations of
such approaches. The Ak and Bk procedures described in ref 1
are typical examples of methods that are used in empirical
selection approaches, and excitation-limited expansions such as
SR-CISD, SR-CISDT, and SR-CISDTQ, etc., are typical exam-
ples of a priori selection approaches which include respectively
single + double, single + double + triple, and single + double +
triple + quaduple excitations with respect to the reference
function. The fundamental problem with these SR approaches
is that different regions of a molecular PES are often dominated
by different determinants. This means that an expansion based
on the dominant function at one conformation will result in a
poor description of the wave function at other conformations. SR
approaches also have difficulty describing multiple states because
the dominant reference function for one electronic state is often
not appropriate for describing other electronic states.

In a multireference approach,7 all of the possible important
determinants, or configuratoin-state functions (CSFs), are first
identified. This may involve either an a priori approach or a
numerical selection procdedure. For example, in an MRCI
expansion based on an a priori full optimized reaction space
(FORS) or complete active space (CAS) reference, all possible
determinants constructed from the set of active orbitals are
treated as reference functions; the choice of the active orbital
space alone entirely determines the expansion space. In an
empirical selection approach, the important regions of the PESs
are scanned, perhaps with a small orbital basis set and with some
relatively cheap electronic structure method, and any important
determinants would be identified and selected numerically. Once
the reference space is determined, all of the individual determi-
nants are treated equivalently to generate the MRCI expansion
space. This may again be done either by empirical approach, with
numerical selection procedures, or with an a priori approach (see,
e.g., ref 1 for further discussions). For example, in a MR-CISD
expansion, all single and double excitations from each of the
reference functions are included. This additional flexibility,
relative to the SR approach, allows the wave function to describe
different regions of the PESs in a balanced manner and to
simultaneously describe multiple electronic states. The practical
difficulty with such MR expansions is that they require more
effort than the analogous excitation-limited SR approach. This
limits the size of the molecules and/or the size of the molecular
orbital basis sets that can be studied. In some cases, even the size
of the active orbital space, or the reference CSF space in general,
must be restricted due to practical limitations. These considera-
tions associated with MR approaches lead to the search for
methods that require less computational effort but still share the
important advantages of the MR approaches. These include, for
example, internally contracted approaches, externally contracted
approaches, and various fragment approaches in which the final

wave function is constructed as products (or more generally
sums of products) of molecular fragments. Such approaches will
be discussed further in section 2.

To our knowledge, the first MRCI calculation was performed
by Liu8 on the H3 molecule. Liu included in the expansion space
all CSFs which interacted with any of the reference functions.
Thus, practically speaking, it was an MR-CISD expansion. The
reference functions were selected emprically.

Since the expansion functions, either Slater determinants or
CSFs, depend on the choice of molecular orbitals, this choice will
greatly influence the quality of the wave function. Hence, the
choice of an orbital set has played an important role throughout
the history of the CI method. In SR approaches, the orbitals are
typically taken as the canonical SCF orbitals of the reference
function. However, other choices have involved natural
orbitals,9,10 localized orbitals,11�14 and pair natural orbitals15�17

that are chosen separately for different fragments of the wave
function, or orbitals chosen to mimic the virtual orbitals of a
hypothetical molecular ion.1,6,18 In some situations, such as
reactions involving the cleavage of bonds, it is clear that SCF
orbitals are inappropriate due to artifactual charge contamination
of the reference wave function. In MR approaches, the orbitals
are usually taken from a multiconfiguration self-consistent field
(MCSCF) calculation.19,20 In these cases, the reference space is
chosen to have sufficient flexibility in order to qualitatively
describe any important valence correlation effects such as
bond-breaking, avoided crossings, and spin-recoupling pro-
cesses. The reference space for the MRCI expansion is usually
taken as the entire MCSCF expansion space, but sometimes, due
primarily to computational limitations, only a selected subset of
the entire MCSCF expansion space is chosen; at other times, due
to some inadequacy of the MCSCF expansion, additional
determinants might be added. Orbital invariance properties of
the MCSCF and MRCI expansions are often further utilized to
refine the molecular orbital expansion space. For example, orbital
localizations might be applied to both the occupied and the
virtual orbitals in the MCSCF expansion. Such procedures leave
the MCSCF wave function itself unchanged, but the subsequent
MRCI expansion can exploit this orbital localization through
reduction in the dimension of the CSF expansion space, approx-
imations within the Hamiltonian operator through the systema-
tic neglect of small interactions, or both. In other situations, the
MCSCF wave function expansion itself is formulated in terms of
localized orbitals; examples of this approach include GVB-RCI
expansions and other direct-product types of expansion spaces.19

Because the eigenvalues from eq 3 are defined and computed
variationally, first-order response properties can be computed
with the Hellmann�Feynman theorem21 as simple expectation
values ∂Ek/∂λ = Æcik|∂H/∂λ|cikæ. As discussed in section 2, this
expression uses the second-quantized Hamiltonian operator
which is defined in terms of the molecular orbitals. This requires
much less effort than an otherwise comparable nonvariational
method. One important application of this feature is the compu-
tation of analytic energy gradients, ∂Ek/∂R, which are used for
the optimization of equilibrium molecular geometries, the com-
putation of saddle-point geometries to determine chemical
reaction barriers, for the determination of molecular forces that
are used in direct-dynamics trajectory calculations, and for
sophisticated PES surface fitting methods that use both energy
and gradient information. For MRCI wave functions, the effort
required to compute the entire gradient vector, consisting of
3Natom elements when using Cartesian molecular coordinates,
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requires typically only a small fraction of the effort to compute
the energy itself.21 Further discussion and examples are provided
in sections 2 and 3.

Although the rather general form and the simple structure of
the CI wave function along with the hierarchical way of trunca-
tion to practical size are very appealing properties, the energy
corresponding to CI wave function truncated according to
excitation level will not scale properly with the size of the system;
i.e., excitation-level truncated CI is not size-extensive22,23 or, with
other terminology, not size-consistent.24 For a general definition
of these two closely related terms, refer to ref 25. Size-extensivity
is more related to many-body diagramtic formulations,26,27 while
size-consistency is a property of the method related to the
separability into subsystems.24,26 Since CI is usually not formu-
lated with many-body tools, the scaling property of CI and its
corrections are mostly discussed with respect to the separation
limits. Therefore, in this review the term size-consistency will be
used. The lack of size-consistency hampers the investigation of
molecular systems of increasing size, since an ever-smaller
fraction of the correlation energy is computed, and in the limit
of infinite systems no correlation energy at all is computed. On
the other hand, the effect is not negligible even for middle-size
molecules, so a correction is desirable. Various methods to
compute this correction will be discussed in detail in section 2.

The lack of size-consistency of the truncated CI wave function
is easily understood by considering two noninteracting systems
by the SR-CID method. While the wave function of the super-
system treated as one entity includes only double excitations, the
product of the two SR-CID wave functions of the subsystems
must include quadruple excitation terms. Consequently, the
energy of the supersystem will not be size-consistent as it will
not be equal to the sum of the energies of the two subsystems. In
fact, it can be shown that the SR-CID correlation energy grows
with the square root of the system size instead of proportionally
to the system size.26 This property holds for any excitation-level-
based truncation and disappears only in the case of full-CI where
the excitation level is naturally exhausted. Note that in the case of
CID, it is the lack of certain quadruple excitations that causes the
problem; this observation is important for understanding the
correction schemes discussed as follows. Also note that by
increasing the excitation level included in the CI wave function,
the missing terms that cause size-consistency errors will corre-
spond to higher excitations and this typically results in a decrease
of magnitude of the error. For the same reason, the size-
consistency error is expected to be smaller for multireference
expansions than for the single-reference expansions.

2. DISCUSSION

2.1. CI Method
2.1.1. Basic Terms and Notations. The nonrelativistic,

clamped nucleus, electronic Hamiltonian operator includes the
electronic kinetic energy, the electron�nuclear attraction, and
the electron�electron repulsion.

H ¼ ∑
j

�p2

2me
∇j

2 þ ∑
j, a

ZeZa

jrj � Raj þ ∑
j > k

Ze
2

jrj � rkj ð7Þ

Although the CI method may be viewed from either the first- or
second-quantization perspective, essentially all modern formula-
tions use the latter approach. The electronic Hamiltonian
operator is then written either in terms of spin-orbital creation

(ap
†) and annihilation (aq) operators

H ¼ ∑
p, q

hpqa
†
paq þ 1

2 ∑p, q, r, s
ðpqjrsÞa†pa†r asaq ð8Þ

or in terms of the spatial-orbital indices using the spin-adapted
generators (Epq) and generator products (epqrs) of the unitary
group

H ¼ ∑
p, q

hpqEpq þ 1
2 ∑p, q, r, s

ðpqjrsÞepqrs ð9Þ

using what is now accepted as standard notation conventions.6 It
is sometimes convenient to treat the two-electron repulsion
integrals as the elements of an array gpqrs � (pq|rs); both
notations are used herein.
TheN-electron expansion functions are chosen typically to be

either primitive Slater determinants of spin-orbitals (the natural
bras and kets of the occupation-number representation) or
configuration state functions. CSFs are linear combinations of
Slater determinants that have the same spatial-orbital occupa-
tions and that are eigenfunctions of the total spin operator S2 and
the spin projection along the z-axis Sz.

S2jk; S,Mæ ¼ SðS þ 1Þjk; S,Mæ ð10Þ

Szjk; S,Mæ ¼ Mjk; S,Mæ;
M ¼ � S, � S þ 1, :::, þ S ð11Þ

In these equations |k;S,Mæ is the CSF indexed by k and is
characterized by the spin quantum number S and the spin
projection eigenvalue M = (1/2)(Nα � Nβ). Nα and Nβ are the
number of occupied α and β spin-orbitals, respectively, in each
of the determinants in the wave function expansion. Primitive
Slater determinants are typically eigenfunctions only of the Sz
operator. Determinantal expansions are usually longer (because
they span several S values) than CSF expansions (which typically
are chosen to span only a single S value). On the other hand, the
one- and two-electron coupling coefficients in the determinantal
basis, Æj|ap†aq|kæ and Æj|ap†ar†asaq|kæ (see eq 8), take on the values 0
and(1 only and are therefore somewhat simpler to evaluate than
the coupling coefficients in the CSF basis, which are usually
written in terms of the spin-adapted generators, Æj|Epq|kæ and
Æj|epqrs|kæ. Consequently, various CI methods are implemented
with both types of formulations. Another important difference
between determinantal and CSF expansions is that the state
ordering may be different (e.g., the lowest eigenvalue in a CSF
basis might correspond to a higher eigenvalue in a determinantal
basis), and this association of the states may change across the
PESs (i.e., due to allowed crossings of states with different S
values). Although determinantal CI expansion spaces are usually
chosen so that there is no spin contamination (breaking of spin-
symmetry) in the converged wave functions, some wave function
optimization procedures are prone to introduce artificial con-
tamination at intermediate stages.4 CSF expansions generally
avoid these spin-contamination issues.
There are two general approaches to generate the CI expan-

sion space: through excitations and through orbital occupation
restrictions. In a SR expansion, for example, a particular expan-
sion space might be generated through excitations from the
reference detrminant |ψ0æ as

fjlæ; l ¼ 1:::Ndimg ¼ fjψ0æ, jψa
i æ, jψab

ij æ, jψabc
ijk æ, :::g ð12Þ
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with

jψa
i æ ¼ a†aaijψ0æ; jψab

ij æ � a†aa
†
bajaajψ0æ;

jψabc
ijk æ � a†aa

†
ba

†
c akajaijψ0æ; ::: ð13Þ

The spin-orbital indices i, j, k, ... range over the occupied orbitals
in the reference determinant, and a, b, c, ... range over the
unoccupied (virtual) orbitals. The determinant |læ in eq 12 in the
wave function expansion space is therefore associated with some
combination of occupied and virtual orbital indices. The expan-
sion function |ψi

aæ is a “single excitation” term in which the
occupied spin-orbital ji in the reference determinant is replaced
with virtual orbital ja, |ψij

abæ is a “double excitation” in which
two occupied spin-orbitals ji and jj in the reference determinant
are replaced with virtual orbitals ja and jb, and so on for the
other expansion terms. In most applications, the excitations are
restricted to preserve the Sz eigenvalue of the reference. A wave
function expanded in this space can be written as

jψæ ¼ cojψ0æ þ ∑
i, a

cai jψa
i æ þ ∑

i > j, a > b
cabij jψab

ij æ

þ ∑
i > j > k, a > b > c

cabij jψabc
ijk æ þ ::: ð14Þ

c0, ci
a, cij

ab, ... are the expansion coefficients. It is common for SR
methods to scale the wave function so that c0 = Æψ0|ψæ = 1; this is
referred to as the intermediate normalization convention, in
constrast with the full normalization convention in which the
norm of the wave function is unity (Æψ|ψæ = 1). The full-CI
expansion occurs when all possible N-rank excitations are
included. Truncations of the expansion based on the overall
excitation level result in SR-CIS, SR-CISD, and SR-CISDT, etc.
The expansion space can also be defined in terms of spatial

orbital indices with the operators Eai, ebj,ai, and so on, but in this case
the expansion terms are typically linear combinations of deter-
minants rather than individual determinants. Further, the rela-
tions [Eai,S

2] = [Eai,Sz] = 0, [ebj,ai,S
2] = [ebj,ai,Sz] = 0, and so on

ensure that the expansion space generated with these operators
maintains the S2 and Sz eigenvalues of the reference |ψ0æ.
The alternative approach to generating the expansion space

consists of imposing occupation restrictions on groups of orbitals
within the set of expansion determinants. All determinants that
satisfy the constraints are enumerated and retained in the expansion.
In the SR example above, the occupied spin-orbital subspace
would consist of nocc = Nα + Nβ spin-orbitals and the virtual spin-
orbital space would consist of the remaining nvirt = 2n � nocc
spin-orbitals. The reference wave function is the determinant
that has the nocc orbital space occupied by the N electrons, and
the nvirt orbital space has zero occupation. The single-excitation
determinants are those that have the nocc orbitals occupied by
N � 1 electrons and the nvirt orbital space occupied by one
electron. The double-excitation determinants are those with the
nocc orbitals occupied by N � 2 electrons and the nvirt space
occupied by two electrons. In multireference approaches, the
orbital space is typically divided into several subsets of orbitals,
and only the determinants that satisfy the occupation limits on all
the subsets are included in the expansion space. Graphical
methods are often used to represent and enumerate the expan-
sion space in this form. The graphical unitary group approach
(GUGA) of Shavitt6,28 is an example of this approach for CSF
expansions. Various determinant-based graphical schemes are
also commonly used29 to specify expansion spaces. (See ref 6 for

a more complete discussion of graphical methods.) Most MCSCF
implementations, whether or not they are based on an underlying
graphical representation, use orbital subspace occupation restric-
tions to specify the wave function expansion space.
The practical differences in these two approaches become

apparent in MR expansions. In this case, a set of reference
functions {|m;refæ;m = 1...Nref} is used to generate the expansion
space. The set of excitation operators is applied to each reference
function to generate the expansion space:

jψðmÞai æ � a†aaajm; ref æ;
jψðmÞabij æ � a†aa

†
bajaijm; ref æ; ::: for m ¼ 1:::Nref ð15Þ

Unlike the single-reference situation, some of these expansion
terms may be zero (e.g., a particular spin-orbital ji may be
unoccupied in a particular reference function |m;refæ), and such
terms must be identified and eliminated. The wave function is
written in analogy to eq 14 as

jψMRCIæ ¼ ∑
m

cmjmæ þ ∑
m
∑
i, a

cðmÞai jψðmÞai æ

þ ∑
m

∑
i > j, a > b

cðmÞabij jψðmÞabij æ

þ ∑
m

∑
i > j > , a > b > c

cðmÞabcijk jψðmÞabcijk æþ ::: ð16Þ

In some cases, a particular excitation from one reference expan-
sion function can be identical to a different excitation from some
other reference expansion function; the inclusion of both terms
results in a linear dependency in the expansion space. Conse-
quently some method must be adopted to identify and eliminate
these redundant expansion terms from eq 16. Redundancies do
not occur in an occupation-based approach; a possible determi-
nant either succeeds or fails to satisfy the occupation restrictions,
and that alone determines its expansion index |læ. Therefore the
resulting expansion space generated in this manner does not
suffer from linear dependence.
Equations for the wave function parameters (the expansion

coefficients) can be obtained from the variational principle by
minimizing the Rayleigh quotient eq 2. Equivalently, one can insert
the wave function into the Schr€odinger equation and project onto the
space of excited determinants. For a double excitation, for example,

Æψab
ij jH � E0jψ0æ þ ∑

k, c
cckÆψ

ab
ij jH � E0jψc

kæ

þ ∑
k > l,
c > d

ccdkl Æψ
ab
ij jH � E0jψcd

kl æ

þ ∑
k > l > m,
c > d > e

ccdeklmÆψ
ab
ij jH � E0jψcde

klmæ

þ ∑
k > l > m > n,
c > d > e > f

ccdefklmnÆψ
ab
ij jH � E0jψcdef

klmnæ ¼ cabij ΔE ð17Þ

For the correlation energy one obtains (in the case of SCF
orbitals)



113 dx.doi.org/10.1021/cr200137a |Chem. Rev. 2012, 112, 108–181

Chemical Reviews REVIEW

ΔE ¼ ∑
i > j, a > b

Æψ0jHjψab
ij æc

ab
ij � ∑

i > j
εij ð18Þ

where the pair energy

εij ¼ ∑
a > b

Æψ0jHjψab
ij æc

ab
ij ð19Þ

has been introduced. Equations 17 and 18 are specific examples
of the transition energy expression in eq 6. The total energy is
given by E =ΔE + E0, with E0 being the energy corresponding to
the reference determinant |ψ0æ.
Inspection of eq 17 reveals that the double excitation coeffi-

cients depend on the single, double, triple, and quadruple
coefficients only, but not on the higher rank coefficients. This
is because the Hamiltonian includes, at most, two-electron
excitation operators. If the wave function is truncated as in
CISD, the terms including triple and quadruple excited coeffi-
cients (the last two terms on the left-hand side of eq 17) will not
appear.

Æψab
ij jH � E0jψ0æ þ ∑

k, c
cckÆψ

ab
ij jH � E0jψc

kæ

þ ∑
k > l
c > d

ccdkl Æψ
ab
ij jH � E0jψcd

kl æ ¼ cabij ΔE ð20Þ

However, these neglected terms are comparable in size with
cij
abΔE, and therefore this approximation is not fully justified. To
see this, examine the term including the quadruple excitations in
eq 17. First, the matrix element can be simplified by using the
Slater�Condon rules,30

Æψab
ij jH � E0jψcdef

klmnæ ¼ δinδjmδaeδbf Æψ0jH � E0jψcd
kl æ ð21Þ

Second, the coefficients can be approximated by the leading term
of coupled-cluster theory

cabcdijkl ≈ cabij c
cd
kl ð22Þ

With these considerations, the last term on the left-hand side of
eq 17 becomes

∑
6¼ ij, ab

k > l, c > d
cabij c

cd
kl Æψ0jH � E0jψcd

kl æ ð23Þ

The restriction on the summation (that none of k, l, c, d can
coincide with i, j, k, l, denoted by 6¼ij,ab), which comes from the
fact that in the quadruple excitations the same electron cannot be
excited twice, ensures that the so-called exclusion principle
violating (EPV) terms23 are excluded. Note also that this term
is very similar to the term on the right-hand side of eq 17 if the
expression for the correlation energy (eq 18) is inserted

cabij ΔE ¼ ∑
k > l, c > d

cabij c
cd
kl Æψ0jH � E0jψcd

kl æ ð24Þ

Upon comparing eqs 23 and 24, it is seen that the two terms differ
only in the restricted summation indices in the former. If the
restrictions were ignored, there would be exact equivalence in the
two terms. This means that instead of simply ignoring higher
excitations from the CI equations, by also neglecting the

energy-dependent term, a more balanced approximation can be
defined. The method using this approximation goes by different
names;31 one such name is CEPA(0),32 and it is the lowest level
of the set of coupled electron pair approximation (CEPA)
methods. Due to its apparent and historical relation to CI, it is
discussed further below. Note that in this way, certain quadruple-
excitation contributions that are neglected in CISD, namely,
those responsible for the size-consistency error, are included in
the energy expression. However, eqs 23 and 24 do not cancel
exactly due to the restricted summation. This means that in
CEPA(0) the EPV terms are not properly accounted for. Further
versions of CEPA32 address this problem by compensating for
the restricted summation in eq 23. (In the literature it is often
stated that CEPA methods “include EPV terms,” since those
terms remaining after the cancellation resemble EPV terms. Note
however, that inclusion of these terms means, on the contrary,
that the EPV terms have been properly handled. Since this
nomenclature is very misleading, it is avoided in this review,
and the terms “proper handling of EPV terms” or “compensating
for EPV terms” are used instead.) The review in ref 31 discusses
the proper handling of EPV terms in more detail.
Using the above approach, the CISD equations may be

corrected for the size-consistency error with various degrees of
partial to full cancellation. These are often referred to as the
CEPA type methods. Another possibility is to leave the CI
equations unchanged and to introduce a correction to the final
energy expression by considering the approximate change of the
CI coefficients due to the correction. For example, using CEPA-
(0)-type arguments, i.e., approximating the effect of higher
excitations by cij

abΔE, the change of the double-excitation coeffi-
cients can be approximated as

Δcabij ¼ ΔEcabij
Æψab

ij jHjψab
ij æ

ð25Þ

which results in the change of the correlation energy

ΔΔE ¼ ∑
i > j, a > b

Æψab
ij jHjψ0æcabij

Æψab
ij jHjψab

ij æ
ΔE ð26Þ

Recognizing that

�
ψab

ij jHjψ0

D E
ψab

ij jHjψab
ij

D E ≈ cabij

is the first-order approximation to the coefficients, the correction
formula may be simplified as

ΔΔE ¼ ∑
i > j, a > b

ðcabij Þ2ΔE ð27Þ

Higher order correction can also be introduced by augmenting
cij
ab by Δcij

ab or by introducing a correction beyond CEPA(0).
Since these methods are applied after the CI procedure, they are
commonly referred to as a posteriori corrections. A variety of
such approaches will be discussed in section 2.1.3.
2.1.2. Solution of the CI Eigenvalue Equation. The

eigenvalue equation in eq 3 can be solved using either “direct”
or “iterative” numerical methods. Direct methods are those in
which the entire matrix is constructed and the individual matrix
elements are modified successively in some manner until the



114 dx.doi.org/10.1021/cr200137a |Chem. Rev. 2012, 112, 108–181

Chemical Reviews REVIEW

eigenvectors ck and the eigenvalues Ek are eventually computed.
For a matrix of dimensionNdim., a typical direct method requires
O(N3

dim.) computational effort and O(N2
dim.) storage and

computes some or all of the eigenpairs. Direct eigenvector
methods are among the most studied of linear algebra
problems. Reference 33 gives a complete review of methods
up through 1998.
The term “iterative” is somewhat of a misnomer because,

except for some trivial situations, all eigenvector solutions are
iterative at some level; even a simple 2 � 2 matrix involves the
computation of a square root, which itself requires an iterative
numerical solution. An “iterative” eigenvalue method is deemed
to be one in which the underlying iterative procedure drives the
overall numerical solution. Iterative methods are often based on
perturbation theory or gradient searches combined with varia-
tional methods, and they focus typically on the convergence of
selected eigenpairs rather than the full set of solutions. An
important class of iterative methods is based on subspace
expansion and includes the Lanczos and the Davidson methods
(see ref 33). These methods often do not require the computa-
tion or storage of individual Hamiltonian matrix elements but
instead require only the result of matrix�vector productsw =Hx
for arbitrary expansion vectors x. The computational effort
thereby depends on the number of nonzero elements in the
matrixH (which is,N2

dim. for a sparse matrix), and the storage
requirements depend on the number of expansion vectors x. The
desired eigenvectors are eventually represented as linear combi-
nations of these expansion vectors.
CI methods are also classified1,34,35 as either conventional-CI or

direct-CI. A conventional-CI approach is one in which the matrix
elements are explicitly constructed and stored. Either a direct or
an iterative diagonalization method may be used within a
conventional-CI approach. A direct-CI approach is one in which
the matrix�vector products within an iterative method are
computed in operator form “directly” from the underlying
one- and two-electron integrals. This is, of course, an un-
fortunate choice of terminology, but it should be clear that a
direct-CI approach is always associated with an iterative
diagonalization method. To further confuse this issue, there
are also AO-direct methods, sometimes also termed double-
direct methods; these are direct-CI methods in which the
required matrix�vector products are computed using the AO
two-electron repulsion integrals which are themselves recom-
puted on-the-fly each time they are needed during the iterative
procedure.
Due to the large dimensions of MRCI wave function expan-

sions, the eigenpairs of eq 3 are computed almost exclusively
using iterative approaches based on the Davidson subspace
method.36�38 In direct-CI formulations, the contributions to w
are accumulated on the basis of convenient organizations of the
underlying two-electron repulsion integrals and the associated
coupling coefficients. In well-organized codes, these underlying
operations typically involve dense matrix�vector and matrix�
matrix operations.39�42 This results in efficient computational
kernels that achieve near-peak performance on modern hard-
ware. The Davidson method is a subspace method, which means
that some number of expansion vectors {xj; j = 1...m} are
collected together to form the columns of a matrix X, and the
eigenvectors ck are represented as linear combinations of these
basis functions

ck ¼ X~ck ð28Þ

The optimal coefficients within this subspace are computed from
the subspace eigenvalue equation

~H~ck ¼ ~S~ckFk ð29Þ
with the matrices of dimension m defined as ~H = XTHX and
~S = XTX. The subspace eigenvalues Fk are called the Ritz values,
and the subspace eigenvectors ~ck are called the Ritz vectors (see,
e.g., ref 33 for a complete discussion). In some implementations
the subspace expansion vectors are chosen to be orthogonal, ~S =
1, while in others this constraint is not imposed, for example, in
order to reduce the I/O requirements each iteration. Typically,
the subspace dimension m changes throughout the iterative
procedure. The Ritz values Fk are upper bounds to the eigenva-
lues Ek of the H matrix, and they satisfy the interlace property
corresponding to eqs 4 and 5 as the subspace dimension m
changes. Subspace vectors may be added, either one at a time or
in blocks,43 until convergence is achieved. In many implementa-
tions, the dimension m may be reduced periodically in order to
decrease the overall storage requirements. This subspace reduc-
tion involves a contraction of the expansion vectors XnewrXoldT
where the rectangular transformationmatrixT depends onwhich
eigenpairs are being converged at the time of the contraction.
Subspace dimensions of m ≈ 10�20 are typical for single-state
calculations, with dimensions up to m j 100 for multiple-state
calculations. For the largest of CI calculations, computational
resources may limit the maximum subspace dimension to smaller
values44m≈ 2 or 3. Thus the subspace matrix diagonalization in
eq 29 is relatively trivial and typically uses a direct (i.e., O(m3)
effort) diagonalization approach. Although the lowest root or
lowest few roots are usually desired, it is also possible to converge
selected interior roots using either root-homing or vector-
following approaches. In a root-homing approach, the subspace
eigenvalue, or eigenvalues, closest to some target value or range
are selected for improvement in the next iteration. In a vector-
following approach, the approximate vector, or vectors, with the
largest overlaps to some set of predefined reference vectors
{c(0)k; k = 1,m0} are selected.
A crucial step of the iterative procedure is the formation of the

new expansion vectors. In the Lanczos subspace method,33 these
are defined from the gradient ∂F/∂c, or equivalently the residual
vector r,

Xnew ¼ 1
2
∂F
∂c

¼ ðH� FÞc ¼ r ð30Þ

where the normalization c 3 c = 1 of the current approximate
vector c is assumed for notational brevity. The Lanczos method
has several desirable features which follow from the facts that the
resulting subspace matrix ~H is tridiagonal and that (in exact
arithmetic) the subspace overlap matrix ~S is diagonal. However,
in practice this expansion vector choice exhibits slow conver-
gence, and due to roundoff errors the diagonal nature of ~S cannot
be assumed to be maintained. The slow convergence is a
particular problem in CI calculations because each iteration
requires the expensive computation of a new w = Hx vector.
To overcome these problems, Davidson36 proposed instead

the expression

Xnew ¼ ðH0 � F1Þ�1r ð31Þ
where H0 is chosen as some easily invertible matrix. In practice,
H0 is taken typically to be either the diagonal elements of H or
some easily computed approximation to these diagonal elements.
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Expressions involving orbital energies (see ref 45 for an example
of a typical implementation) or averaged expressions involving
the hpp, gppqq, and gpqpq integrals (see refs 4, 46, and 47 for further
discussions) are common choices. This eliminates the need to
store and retrieve the H0 elements during the optimization
procedure. With determinantal expansions, artificial spin-con-
tamination issues may be avoided either by choosing an H0 for
which [H0,S2] = 0 or by invoking a subsquent explicit spin-
projection step (e.g., see refs 4 and 46-48 for further discussion).
The expression in eq 31 may be derived either from perturbation
theory or from relaxation arguments, and the matrix (H0 �
F1)�1 may be regarded as a preconditioner of the gradient.
Because the expansion vectors are created in an iterative

process, it is not necessary to store the exact elements, for
example, from eq 31. Any small error introduced in one expan-
sion vector can be compensated for in subsequent expansion
vectors. Lossy data compression may be applied to the vectors in
order to reduce storage requirements, reduce I/O bandwidth, or
to reduce communication volume in a parallel environment, and
if the differences that are introduced into the individual vectors
are controlled, they do not affect the overall convergence rate.
Perturbation theory estimates, combined with rigorous error
bounds, are typically used in the formal analysis and in the data
compression process.49�52 Typically these techniques involve
deleting small expansion vector elements entirely, approximating
floating point values with reduced precision, and approximating
blocks of elements using linear algebra approaches (e.g., incom-
plete Cholesky factorizations53�55 or truncated singular value
decomposition).
Equation 31 is almost certainly the most popular expression

used in iterative Davidson procedures. In practice it is usually
reliable, provided some care is taken to account for small
denominators in the preconditioner. These can arise in
situations where a diagonal element happens to be close to the
current Ritz value, particularly in excited-state calculations.
Equation 31 does achieve the goal of improving the convergence
rate over the Lanczos method. Typically for CI calculations,
about 10�20 iterations are required to achieve convergence for
each converged eigenpair. However, in contrast to the Lanczos
method, the subspace matrix ~H is generally dense, without an
explicit orthogonalization step the overlap matrix ~S is no longer
diagonal, and all of the subspace vectors X and their matrix�vec-
tor products W need to be stored. Nonetheless, the Davidson
method with diagonal preconditioners is without a doubt among
the most popular and reliable approaches used within modern CI
calculations.
In certain situations, however, convergence of the Davidson

procedure with a diagonal preconditioner can be slow, requiring
hundreds of iterations, and regardless of the convergence rate,
the individual iterations with large CI expansions are expensive.
This leads to the exploration for improved preconditioners in
eq 31 that converge to sufficient accuracy with fewer expensive
matrix�vector products. Olsen et al.56 pointed out that in the
limit H0fH in eq 31, then xnewfc, the current approximate
vector, and the iterative procedure makes no progress toward
convergence. They replace eq 31 with the modified equation

Xnew ¼ ðH0 � F1Þ�1ðr þ εcÞ ð32Þ

with the orthogonality constraint xnew 3 c = 0. The iterative
subspace method based on this correction vector is called the
inverse-iteration generalized Davidson (IIGD) method.56 In the

limit H0fH in eq 32, the correction vector corresponds to a
Rayleigh quotient inverse iteration, which not only converges but
also converges cubically33 (i.e., the error in a particular iteration is
the cube of the error of the previous iteration). This observation
has little practical value (because iterating the linear equation
solution of eq 32 with the exactH is just as expensive as iterating
the eigenvalue equation), but it does show that the formulation is
at least consistent in this formal limit. Sleijpen et al.57,58 and van
Dam et al.59 arrive at a similar correction vector definition in their
generalized Jacobi�Davidson (GJD) approach through approx-
imation of the Rayleigh quotient inverse iteration equations.
They also propose several ways to compute xnew with one-step
rather than two-step procedures.
Finally, Shepard et al.60 proposed the subspace projected

approximate matrix (SPAM) method. This method employs a
sequence of one or more approximations to the H matrix
(denoted H(1), H(2), and so forth). These approximations are
combined with projection operators defined with the current
expansion vectors, P = XXT and Q = (1 � P), to arrive at a
recursive procedure that may be implemented as a modification
of the Davidson subspace method. Some of the features of this
approach are that the effective preconditioner improves each
iteration because of the changing projection operators, the
correction vector xnew is orthogonal not only to the current
approximate eigenvector ck but to the entire subspace X, and the
approximate matrices need not be easily invertible. In the formal
limitH(1)fH, the SPAM approach would, in principle, converge
in a single iteration, showing that the procedure is formally
consistent. The usefulness of the SPAM approach rests on the
difference in the computational effort in computing matrix�
vector products with the approximate matrices compared to the
effort for exact matrix�vector products. These approximations
may consist of the neglect of off-diagonal blocks of the exact
matrix (e.g., the Bk approximation1), approximations to the two-
electron repulsion integrals (e.g., incomplete Cholesky
factorizations,53�55 RI approximations,61 or the neglect of classes
of multicenter integrals in an AO-direct implementation), den-
sity-screening methods (in either the MO or the AO basis), or
representations using reduced precision arithmetic (e.g., to
exploit 32-bit floating point GPU hardware).
The expansion vectors X and the corresponding matrix�

vector productsW are required in several steps of the Davidson
subspace method, including the computation of the subspace
matrices ~H =WTX and ~S = XTX, the computation of the residual
vectors rk = (W~ck � FkX~ck) and the corresponding residual
norms |rk|, the orthonormalization of the expansion vectors, and
contractions of the subspace in the form XnewrXoldT and
WnewrWoldT. Blocked algorithms that are designed tominimize
I/O to external storage or to minimize communications require-
ments in parallel implementations may be used for these steps.62

Compared to the unblocked algorithms, the overhead can be
reduced from O(m2) to only O(m) with this approach. These
efficient blocked algorithms are particularly important for larger
subspace dimensions associated with, for example, multiple-state
calculations. Reference 62 contains a general discussion of these
blocked algorithms along with several other features of Davidson
implementations that are useful for large CI expansions.
Because each iteration of the diagonalization procedure is so

expensive, convergence is seldom continued until full machine
precision is achieved. Instead, the iterative process is typically
terminated when the eigenvalues are converged to about 10�6 to
10�8 Eh. The convergence is typically monitored in several ways,
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including the changes in the Ritz values and/or vectors in each
iteration along with estimates of the predicted energy change for
the next iteration (e.g.,ΔFk≈ rk 3 x

new). In addition, there are also
rigorous bounds that apply to the eigenvalue problem.33 The
most useful include the residual norm bound |rk|g |Ek� Fk|, the
gap bound |rk|2/γkg |Ek� Fk|, and the spread bound |r

1|2/σe
|E1� F1|. The gap γk is the difference |Fk� Ek0| between the Ritz
value Fk and the nearest exact eigenvalue Ek0 for k0 6¼ k, and the
spread σ is the spectral range of the matrix, ENdim. � E1. The first
two bounds apply to both interior and exterior eigenpairs, while
the last bound results in an upper bound to the lowest exterior
eigenvalue (e.g., the ground state) in CI calculations. A detailed
discussion of the practical use of these bounds is given by Zhou
et al.63,64 The gap bound is one of several expressions that shows
that the error in the eigenvalue is second-order in the error in the
wave function.1,33 Although these rigorous bounds are indeed
useful in CI calculations, it has proven difficult to extend them to
other types of electronic structure methods.
2.1.3. Size-Consistency Corrections to CISD. As pre-

viously discussed, the most serious formal deficiency of MRCI
is the lack of size-consistency; i.e., the energy of the system does
not scale properly with the system size. This shortcoming of
CI led to the development of many-body methods (see, e.g.,
ref 26 and references therein), in particular different perturbation
theory ansaetze and coupled cluster methods (for reviews see,
e.g., refs 65�70), but several correction schemes to the CI energy
and wave function have been suggested over the years as well.
It is advantageous to group these latter into two categories:
one includes a posteriori correction of the energy, the second
includes corrections to the CI equations.
2.1.3.1. A Posteriori or Davidson Corrections. The first a

posteriori correction of the CI energy was suggested as early as
1962 along with molecular applications by Sinanoglu:71

ESC ¼ ∑
i > j

εij ∑
6¼ i, j

k > l, a > b
ðcabkl Þ2 ð33Þ

where εij is the pair energy defined in eqs 18 and 19. The second
summation is restricted to k, l indices not coinciding with i
and/or j, ensuring proper treatment of the EPV terms. The above
form is not expensive to evaluate; therefore, it is rather surprising
that it has not been usedmore widely by the theoretical chemistry
community. Instead, the popular formulas all represent the
average of the above expression where pairs are not distin-
guished, and thus they can be written in terms of the correlation
energy (ΔE) instead of the pair energies. The first such correc-
tion has been suggested by Davidson in a book chapter72 (see
also ref 73), and therefore these are often referred to as Davidson
corrections.
Several versions of this correction are used in the literature.

The simplest one is the original suggestion by Davidson72 and by
Langhoff and Davidson73 (cf. eq 27)

EDC ¼ ð1� c0
2ÞΔE ð34Þ

i.e., the correction is proportional to the correlation energy and to
the square norm of the correlation part of the wave function (see
also ref 74). Note that this formula can be obtained from ESC by
replacing the second, restricted summation by an unrestricted one

∑
6¼ i, j

k > l, a > b
ðcabkl Þ2 ≈ ∑

k > l, a > b
ðcabkl Þ2 ð35Þ

This simplymeans that the EPV terms that should be excluded from
the correction have been included. Proper normalization of the
correction has been suggested by Luken75

ERDC ¼ 1� c02

c02
ΔE ð36Þ

Luken’s derivation closely follows Sinanoglu’s analysis71, which
leads to ESC (see above). This form of the correction is often
referred to as the renormalized Davidson correction (RDC). By
applying size-consistency corrections to the coefficients as well,
and by using these to calculate the energy correction, a slightly
different formula was derived independently by Davidson and
Silver76 and by Siegbahn.77

EDSS ¼ ð1� c02Þ
2c02 � 1

ΔE ð37Þ

Despite the different forms, all of these formulas use the
CEPA(0) approximation; i.e., EPV terms23 are incorrectly
included in the energy expressions. By comparing the CC and
CI methods, Paldus et al.78 give an excellent theoretical back-
ground of these approximations. They clearly state that these
formulas will overestimate the effect of higher excitations, and
in this respect ERDC should be preferred over EDC.
The next step taken to improve the correction was the correct

treatment of EPV terms. Interestingly, however, the work of
Sinanoglu71 mentioned previously was not used as the starting
point in this effort. Instead, averaged forms with the correlation
energy replacing the pair energies were considered. The first
useful approximation was given by Pople et al.79

EPC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 2N tan2ð2θÞp �N

2ðsecð2θÞ � 1Þ ΔE ð38Þ

with cos(θ) = c0, where N is the number of correlated electrons.
To show that this formula accounts for EPV terms, Meissner80

has rewritten it into the following simpler form (assuming c0∼ 1)

E0PC ¼ 1� 2
N

� �
1� c02

c02
ΔE ð39Þ

This formula can also be derived using an averaged CEPA
approximation81 by considering noninteracting, equivalent, elec-
tron pairs. The resulting correction vanishes for two electrons,
N = 2, which is formally correct since CISD is exact for two-
electron wave functions, and there are no imposed excitation-
level limitations on the wave function expansion. Note that the
form E0PC had been used in multireference applications (see, e.g.,
ref 82) prior to either ref 80 or ref 81.
A more rigorous consideration of a helium-like noninteracting

system led Duch and Diercksen83 to the following formula

EDDC ¼ 1� c02

2ððN � 1Þ=ðN � 2ÞÞc02 � 1
ΔE ð40Þ

which is a slightly modified version of the Davidson�Silver�
Siegbahn (EDSS) correction.

76,77

Further improvement can be introduced by considering
different CEPA arguments and including electron pair interac-
tion in an averaged manner. Meissner80 suggested the use of the
formula

EMC ¼ ðN � 2ÞðN � 3Þ
NðN � 1Þ

� �ð1� c02Þ
c02

ΔE ð41Þ
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Upon comparison with the second form of the Pople correction
in eq 39 to this expression, the above formula yields a smaller
correction due to the different leading factors and therefore
compensates for the well-known overestimation of most Davidson
correction schemes. Furthermore, EMC vanishes for three-electron
wave functions. As pointed out by Meissner,80 this is consistent
with the fact that there are no contributions from quadruply
excited configurations in a three-electron system.
Duch and Diercksen83 carefully compared the above-men-

tioned formulas and concluded that the Duch�Diercksen and
Pople corrections clearly outperform the original Davidson
correction and its renormalized variants. Shortly thereafter,
Meissner84 suggested a new correction which may be regarded
as an approximation of the coupled-cluster (CC) energy using
the CI coefficients. The calculation of this correction is com-
putationally more demanding than the usual Davidson-type
corrections since, in addition to the coefficients, some additional
Hamiltonian-matrix elements are needed as well.84 These matrix
elements are not readily available in direct-CI programs, which
explains why this correction, despite its accuracy, has not been
widely implemented or used in applications.
For the sake of completeness, note that a size-consistency

correction for the CIS method has been suggested by Zalesny
et al.85

As previously noted, Davidson-type corrections are largely
obsolete for single-reference CI; coupled-cluster methods can,
and arguably should, be used instead. In contrast to single-
reference approaches, the generalization of the above formulas
for the MR case is, however, of significant interest since no MR-
CC method yet satisfies all theoretical and practical
requirements.86�88,140,179�181

The first applications of Davidson-type correction for the
multireference case were due to Peyerimhoff and co-workers
(see, e.g., refs 89�91) who used the Davidson correction EDC to
correct the MR-CISD energy with

EBPB ¼ ð1� ∑
p ∈ P

cp
2ÞðEMR-CISD � E0Þ ð42Þ

A more precise description of this formula is given in a book
chapter by Buenker et al.92 According to this definition, cp are the
coefficients in the reference space (P) and E0 is the reference
energy. Prime et al.93 derived the renormalized (ERDC) form of
the correction using quasidegenerate perturbation theory argu-
ments, while Simons94 reached the same conclusion by compar-
ing the MRCI and MR-CC wave functions. In later applications,
Burton et al.82,95,96 used this along with the simplified form of the
Pople correction (E0PC) in multireference situations. It has been
concluded (see in particular ref 96) that the latter E0PC correction
gives more accurate results due to a lesser extent of overestima-
tion. Note that in all these applications by the group Peyerimhoff
et al.82,91,92,96 the correction formulas were directed toward
extrapolation of the truncated CI energy to the full-CI limit
rather than to correct specifically for size-extensivity effects. The
EBPB formula was later used by Bauschlicher,97 Schwenke and
Truhlar,98 and Ackermann and Hogreve.99 Shavitt et al.100 give a
nice overview of all these efforts and compare the different
corrections. Jankowski et al.101 presented a generalization of
Siegbahn’s derivation77 of EDSS for the quasidegenerate case. The
multireference version of the Meissner correction (EMC) was
already proposed in the original publication,80 and it has been
pointed out that it outperforms other variants.

The multireference correction formulas can be obtained from
the single-reference ones by replacing c0 and the reference energy
by their multireference counterparts. Prime et al.93 used quasi-
degenerate perturbation theory arguments to derive the renor-
malized form of the correction (ERDC) by employing

c0
2 � ∑

p ∈ P
cp

2 ð43Þ

where cp are the coefficients of the reference functions in the
MRCI wave functions. Meissner gives a somewhat simpler
justification for the use of eq 43 in the appendix of ref 80.
Blomberg and Siegbahn102 start their derivation with the “logical
choice” by defining c0 as the overlap between the reference and
final wave functions, which leads to

c0
2 � Æref jciæ2 ¼ ð ∑

p ∈ P
cð0Þp cpÞ2 ð44Þ

where cp
(0) are the coefficients of the reference functions in the

normalized zero-order (MCSCF) wave function. They found
that this choice results in corrections that are too large, in
particular near transition states where the ordering of states in
the reference and final spaces may differ. Therefore, they replace
cp
(0) in eq 44 by the normalized coefficients of the reference
functions in the final MRCI expansion, which results in eq 43
again. There are several other arguments for the use of eq 44:
Simons94 derives eq 44 by comparing the MRCI and MR-CC
wave functions; Van Lenthe and co-workers103,104 use eq 44,
citing a private communication by Ahlrichs; Shepard21 (in
particular see page 417 of ref 21) discusses the same choices in
the context of analytic energy derivatives; recently, Werner
et al.105 also give this formula explicitly and state that their earlier
applications used this expression without specifying it. Addition-
ally, they also suggest a third variant105 of c0 which, similarly to
Blomberg and Siegbahn,102 uses the overlap of the rotated
reference function and the final wave function in a formula
resembling eq 44. The rotated reference functions are those
functions which have the largest overlap with the final MRCI
states. This latter choice is preferable in the vicinity of conical
intersections and avoided crossings where the reference space
part of the wave function changes rapidly and the ordering of the
reference and final energies are not the same, but it should give
similar results otherwise.
In a recent review Khait et al.106 present numerical compar-

isons of eqs 43 and 44 and find that eq 43 gives slightly better
results. (Note that Khait et al.106 refer to eq 44 as the “original
formula” and to eq 43, which probably has been used more often,
as “modified”, which might cause some confusion.) To the
contrary, Werner et al.105 found that eq 44 gives somewhat
better results for the barrier heights of the F + H2 reaction,
although they also suspect some error-compensation or error-
cancellation effects. Considering all this information, it appears
that, both theoretically (see ref 80) and numerically (see ref 106),
the choice eq 43 is preferred, although in practice the difference
does not seem to be critical.
In addition to c0, there are also several possibilities in the

choice of E0. Early papers
80,91,103,104 all used the energy corre-

sponding to the reference space (usually the MCSCF energy);
even the latest investigation by Khait et al.106 uses the same
choice. The use of the expectation value of the Hamiltonian in
the reference space using the MRCI instead of the MCSCF
coefficients has been discussed in ref 21. This choice has received
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little attention in the literature until recently when Szalay107 used
this in a MR-AQCC variant (discussed below) to address some
discontinuity issues.
A more involved correction using MR perturbation theory,

introduced by Duch andDiercksen,83 results in a much smaller size-
consistency error than direct application of the single-reference
corrections to the multireference case. Meissner and co-workers
constructed a multireference correction by calculating higher
excitation coefficients approximately.108�110 Their method can
be viewed as the noniterative version of the RMR-CCSD
(reduced multireference) method of Li and Paldus.111,112 Only a
limited number of tests are available for this method (see,
e.g., Meissner et al.113), and unfortunately no comparsions are
published with the usual methods. Other multireference meth-
ods have also served as a starting point for Davidson-type
corrections. Meller et al.114 used their MR-(SC)2-MRCI method
(see below) in the derivation. Huba�c et al.115,116 obtained a
correction by Brillouin�Wigner perturbation theory117 which
was found to outperform both the EDC and ERDC corrections.
Further details on the theoretical comparison of the a priori
corrections can be found in refs 31, 84, and 106.
In light of the above discussion, it is worth reviewing which form

of the Davidson corrections are used by different popular program
systems. COLUMBUS118,119 uses eq 43 along with E0 being the
MCSCF energy and calculates the multireference versions of
EDC, ERDC, ESDS, and E0PC. The correction in MOLPRO120 is
restricted to ERDC but offers all three choices for c0 and two
possibilities for E0 (MCSCF energy, or the expectation value
with the rotated functions). GAMESS121,122 also calculates ERDC
using eq 43. MOLCAS123 uses the renormalized Davidson
correction (ERDC) and a slightly modifed form of the modified
Pople correction (E0PC) called there the “ACPF correction”.
A full numerical evaluation of the different corrections is out of

the scope of this review. To give the reader an overview of the
performace of different methods, in Table 1 the results of
calculations on the symmetric dissociation of water are compiled.
The most important observations are that all corrections sig-
nificantly improve upon MRCI, and corrections using the
CEPA(0) approximation (EDC, ERDC, EDSS) overshoot by giving
energies well below the exact (full-CI) limit. The best NPE
(nonparallelity error) can be found for the Pople (EPC) and
Meissner corrections (EMC). For a more detailed analysis see refs
31, 80, and 83.
From the survey of the literature it seems that the majority of

applications use either the original (EDC) or the renormalized
(ERDC) correction. From the already mentioned analyses by
Meissner,80 Duch and Diercksen,83 and recently by Szalay,31 it is
clear however that either the Meissner correction (EMC)

80 or the
Pople correction (EPC)

79 are preferable due their simplicity and
to the correct treatment of EPV terms. Consequently, these are
the recommended correction expressions.
Note thatMR-CISD calculations with a Davidson-type correc-

tion are often labeled as MR-CISD+Q, indicating that some
quadruple excitation contributions have been included. Although
this is a convenient shorthand, the problem with this notation is
that the exact correction expression often is not specified, and
consquently insufficient information is availabe to reproduce the
results. In most cases it is the original Davidson correction (EDC)
which is used, but not always, and caution must be taken when
using these results.
Brown and Truhlar126 recognized that the external correlation

energy of an MR-CISD wave function relative to an MCSCF

reference (Eci � E0) is approximately a constant fraction of the
exact external correlation energy. They proposed the scaled
external correlation (SEC) energy

Esec ¼ E0 þ Eci � E0
F

ð45Þ

as a semiemprical correction to the MR-CISD energy. The
parameter F is taken to be a constant over the entire PES, and
its value is adjusted to fit known bond dissociation energies,
barrier heights, excitation energies, or other experimental data.
This expression has the same form as the Davidson-correction
expressions discussed in this section. For example, eq 34 may
used to write the corrected energy as

Etotal ¼ E0 þ ð2� c0
2ÞðEci � E0Þ ð46Þ

and similar expressions apply to the other correction expressions.
The calculation of analytic energy gradients for the nonvaria-
tional Davidson-corrected energy expressions is complicated by
the need to compute the c0

2 derivatives (i.e., from the CI wave
function response equation). As discussed in section 2.5, this is
unnecessary for the variational MCSCF and MRCI energy
gradients. However, due to the assumption that F is independent
of geometry, the SEC energy gradient can be computed directly
from the underlying MCSCF and MRCI energy gradients, or
alternatively from the appropriately weighted reduced density

Table 1. Performancea of Various Multireference Methods
for H2O

distanceb

method 1 Re 1.5 Re 2 Re 2.5 Re 3 Re ΔE c NPE d

MR-CISD160 4.96 4.72 3.72 3.14 3.01 3.91 1.95

+ EDC �1.21 �1.14 �0.70 �0.60 �0.58 �0.85 0.63

+ ERDC �1.47 �1.37 �0.86 �0.73 �0.68 �1.02 0.79

+ EDSS �1.73 �1.63 �1.02 �0.84 �0.80 �1.20 0.93

+ EPC (N = 8) 0.05 0.06 0.22 0.21 0.21 0.15 0.17

+ EPC (N = 10) �0.31 �0.28 �0.04 �0.01 0.01 �0.13 0.32

+ E0PC(N = 8) 0.14 0.16 0.28 0.23 0.23 0.21 0.14

+ E0PC(N = 10) �0.17 �0.15 0.05 0.05 0.06 �0.03 0.23

+ EMC(N = 8) 1.51 1.44 1.26 1.06 1.02 1.26 0.49

+ EDC(N = 10) 0.96 0.93 0.86 0.73 0.70 0.84 0.26

MR-CEPA(0)160 �1.80 �2.00 �2.37 �0.92 �0.82 �1.58 1.55

MRCEPA160 �0.79 �0.57 �0.54 �0.62 �0.64 �0.63 0.25

MR-ACPF(N = 8)160 0.05 0.07 0.24 0.21 0.20 0.15 0.19

MR-ACPF (N = 10) �0.29 �0.26 �0.01 �0.02 �0.01 �0.12 0.28

MR-ACPF-mc160 0.22 0.43 0.34 0.20 0.18 0.27 0.25

MR-ACPF-2 (N = 8)162 0.71 0.82 0.71 0.53 0.47 0.65 0.35

MR-AQCC(N = 8)160 1.52 1.47 1.28 1.07 1.03 1.27 0.49

MR-AQCC (N = 10) 0.92 0.91 0.87 0.72 0.70 0.82 0.22

MR-AQCC-mc160 1.56 1.69 1.45 1.23 1.18 1.42 0.51

MR-(SC)2CI124 2.11 2.09 1.83 1.77 1.83 1.93 0.34

CD-MRCISD177 1.03 0.91 0.80 0.71 0.64 0.82 0.39
aTable entries are the errors ΔE in mEh with respect to the all-electron
full CI of Olsen et al.125 with the cc-pVDZ basis. A 44 CASSCF reference
was used for all calculations. For some corrections, the indicated number
of electrons was used in the correction formula. b Symmetric dissociation
relative to Re(OH) = 1.843 45 bohr, —HOH = 110.6�. cMean error.
dNonparallelity error (NPE = max(ΔE) � min(ΔE)).
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matrices, providing an efficient algorithm for the SEC energy
gradient.
2.1.3.2. CEPA-Type Multireference Methods. In this section

those methods which include the extensivity correction in the
equations rather than as an energy correction are summarized. In
these methods the expansion coefficients are corrected along
with the energy. A feature of these methods is that even though
the expansion coefficients are avialable, the actual corresponding
wave function often cannot be defined in a straightforward
manner. In this sense these all follow the CEPA (coupled
electron pair approximation) scheme. The original CEPA idea
originated from Kelly127,128 in the 1960s and was revived129�135

in the 1970s after coupled-cluster theory (originally called CP-
MET, coupled pair many electron theory136) provided a solid
theoretical foundation. The development of CEPA methods has
been largely motivated by the need for accurate, large-scale
calculations, logically building upon CI technology. These meth-
ods include the variational versions CEPA-var by Pulay137 and
the CPF (coupled pair functional) method by Ahlrichs et al.,138

which are of particular importance. Single-reference CEPA
methods appear to be obsolete with the development of
coupled-cluster methods,65,66 since the latter are theoretically
more rigorous yet computationally comparable in effort, although
this view has been challenged recently.139 However, in the multi-
reference domain, CEPA-type methods have never lost impor-
tance due to the lack of widely acceptedMR variant of CC theory
despite recent effort (see, e.g., refs 86�88,140, and 178�180).
This section focuses on the MR variants of the CEPA-type
methods—for details of the single-reference CEPAmethods, the
interested reader is referred to the excellent review by Koch and
Kutzelnigg.141

Surprisingly a large number of different variants of multi-
reference CEPA-type methods has been proposed and used in
the literature. Readers of the resulting papers, and the potential
users of these methods, have a hard time choosing the best method
to use in chemical applications. The methods are closely related,
although the connections might not be obvious by just reading
the derivations in the respective papers. These relations remain
hidden, often even from the authors (and perhaps for reviewers);
for this reason, some of the methods are completely equivalent,
appearing under different names and from different derivations.
A more formal comparison of all these methods can be found
elsewhere.31,142,143 The present review discusses these methods
briefly in chronological order. The comparisons will concentrate
on the following important properties of themethods: (i) treatment
of EPV effects, (ii) redundancy contributions in the equations,
(iii) whether the calculation of the energy gradient is possible via
an energy functional, and (iv) applicability to excited states.
Although themotivation for introducing these methods was to

account for the size-consistency error of MR-CISD, most of the
methods given here are not size-consistent in the general sense.
Some of them fulfill other important theoretical requirements
instead, such as the proper description of the limiting case of
noninteracting pairs or the proper behavior for certain numbers
of electrons. Although not rigorously size-consistent, all the
methods seek the goal that any remaining error is small and
does not bias the application to molecular systems (see, e.g., refs
142 and 143).
Perhaps the first suggestion for a CEPA-type approach in the

multireference domain is from Prime et al.93 whomade use of the
cancellation of quadruple excitation contributions to quaside-
generate perturbation theory. By accounting also for the EPV

terms, they developed a multireference version of the linearized
CP-MET.136 No numerical applications were given in ref 93, and
no implementation results have been reported since.
The first practical multireference variant was proposed by

Bartlett and co-workers144,145 in the form of their multireference
linearized coupled-cluster method (MR-LCCM). The derivation
is based on linearization of theMR-CC equations as proposed by
Paldus;146 i.e., the method uses the CEPA(0) approximation. To
avoid problems arising from the noncommutative nature of the
excitation operators, the orthogonal complement of the refer-
ence space was excluded from theMR-LCCMwave function. On
the basis of this feature, the authors of ref 144 point out the
improved convergence behavior of the resulting equations.
Possible inclusion of the orthogonal complement in the MR-
LCCM method was considered in ref 145.
Three new variants then appeared in 1988�1989: the method

called MR-CEPA(0) by Gdanitz and Ahlrichs81 was a byproduct
of MR-ACPF, the unitary CEPA (UCEPA) of Hoffmann and
Simons147 was based on their multireference unitary CC
ansatz,148 and the variational perturbation theory (VPT)method
of Cave and Davidson149 used perturbation theory arguments. In
all three, the basic assumption is the CEPA(0) approximation,
and redundancy is not considered. It was determined (see, e.g.,
ref 142) that these methods are indeed completely equivalent,
and they differ from the MR-LCCMmethod in that they include
the orthogonal complement of the reference space in the wave
function. This difference does not really affect performance in
most cases, but they are clearly preferable for situations where the
reference wave function changes rapidly (e.g., avoided crossings,
cusps, and crossing seams). The analytic gradient can easily be
defined for all these methods,142 and the calculation of excited
states is possible via the diagonal shift formulation, but this
option was not considered in the original papers (except for MR-
CEPA(0) which is a special case of MR-ACPF81). In the
following discussion, these three methods are all denoted MR-
CEPA(0).
To address the convergence issue in cases of quasidegeneracy

in the reference space, particularly when exclusion of the
orthogonal complement is not acceptable, Cave andDavidson150

proposed a variant called the quasidegenerate variational pertur-
bation theory (QDVPT) method, which was based on an
effective Hamiltonian. It has been shown142 that it also uses
the CEPA(0) approximation, and it is not expected to give
substantially different results than MR-CEPA(0) (or VPT)
except in the targeted quasidegenerate situations. Numerical
results also support these expectations.150 Note, however, that
the CEPA(0) approximation is not valid if quasidegeneracy is
present in the reference space, and therefore the use of either
variant is not fully justified. Another drawback of the QDVPT
method is that the analytic gradient cannot be easily formulated
due to the lack of an energy functional. By construction, QDVPT
can be applied to excited states.
An important development was proposed by Gdanitz and

Ahlrichs81 in the same year. On the basis of the CPF method,138

they proposed an averaged formula in their multireference
averaged coupled pair functional (MR-ACPF) method to ac-
count for EPV terms for the first time. Furthermore, the
formulation was pioneering since the equations were formulated
as the derivative of an energy functional, allowing immediate
recognition of its relation to CI methods and providing a path for
the calculation of analytic gradients similar to MRCI. The
approximation used for the EPV terms appeared to be equivalent
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to the modified form of Pople correction79 eq 39 and can be
explained by dividing the system into noninteracting electron
pairs. Although the method is not strictly size-consistent, this
formulation ensures that (i) the method is exact for noninteract-
ing electron pairs and (ii) it is size-consistent for identical
subsystems using a single function in the reference space. This
method is among the most popular variants, and it has been
implemented within several popular program packages.
Departing briefly from the chronological discussion, note that

a variant of QDVPT (which is a MR-CEPA(0) method) using an
ACPF-style correction for the EPV terms was subsequently
proposed by Murray et al.151 under the name QDVPT-APC
(QDVPT with averaged pair correction). Since quasidegeneracy
in the reference space is much less of a problem for MR-ACPF
than for MR-CEPA(0), this method offers no apparent advan-
tages overMR-ACPF. On the contrary, the formulation of energy
derivatives is hindered by the lack of an energy functional. This
method has been only rarely applied in chemical applications.
Another way to improve the MR-CEPA(0) method is to

consider redundancy effects. The redundancy problem can easily
be understood by realizing that configurations (or determinants)
in the higher excitation space may be reached from more than
one reference function. In contrast to the single-reference case,
this means that correction for some higher excitations will be
countedmore than once. This redundancy must be considered in
order to avoid overestimation of the correction. The first sug-
gestion came from Ruttink et al.103 under the name MRCEPA,
who defined excitation classes which were characterized by
the holes in the inactive orbitals and by particles on the virtual
ones. These classes were considered separately when calculat-
ing the size-consistency correction. On the other hand, the
EPV effects were neglected in MRCEPA; thus it remains a
CEPA(0)-type method. The coefficients of the reference func-
tions are relaxed in this procedure; i.e., the orthogonal compo-
nent of the reference function was considered. An analytic
gradient expression is not available for this method, but excited
states can be described.
A more rigorous adaptation of the single-reference CEPA(n)

series to the multireference problem was presented by Fulde and
Stoll152 in 1992. These methods were designated by the acronym
MR-CEPA-n, with n = 0, 1, 2. In all variants the reference
function is a prior MCSCF function that is not relaxed subse-
quently. The first version MR-CEPA-0 is equivalent to MR-
LCCM as acknowledged by Fulde and Stoll.152 MR-CEPA-1 and
MR-CEPA-2 correspond to the single-reference CEPA(1) and
CEPA(2), respectively. Redundancy effects are also considered,
but only through the energy expression rather than the wave
function equations. Fulde and Stoll152 do not prove size-
consistency explicitly, but they argue that the derivation through
cumulants assures this property. Implementation into CI pro-
grams would be easy in a diagonal shift form, and no substantial
additional computational effort compared to CI would be
needed. There is no report on the implementation of any
variants. Calculation of the analytic gradient would, however,
be difficult since a functional of the energy cannot be associated
with the equations. Furthermore, the method lacks invariance
with respect to transformation of occupied orbitals, as do the
single-reference counterparts. Treatment of excited states might
be difficult and was not discussed in the original publication.152

In 1993, the method known as MC-CEPA (multiconfigura-
tional reference CEPA) was introduced by Fink and Staemmler.153

The equations defining the method reduce to Kelly’s CEPA

formula127,128 in the single-reference case. Nonorthogonality of
functions produced by products of operators are considered by
the norms. Redundancies are not considered within this approx-
imation. Implementation in the form of diagonal shift is easy; the
additional computational effort is due to the calculation of the
norms. Since no averaging of the pair energies is invoked, the
method might be superior to MR-ACPF in situations in which
the averaged pair approximation is not appropriate. No func-
tional can be defined for the method, so an analytic gradient
formulation is challenging. MC-CEPA has been implemented
within the internally contracted framework (see section 2.1.5.1)
and uses the PNO approximation15,16 which allow applications
for rather large molecular systems (see section 3.1).
Starting in 1989, another series of methods were developed by

Tanaka and co-workers154�157 under the name multireference
coupled pair approximation (MRCPA). These methods use an
effective Hamiltonian formalism similar to the QDVPT method.
There are two levels of approximations: (i) MRCPA(2) (formerly
known asMRCPA(0) 154,155) uses a CEPA(0) basis, and, as such,
it is equivalent to QDVPT 157 ii)MRCPA(4)156 (which is a slight
modification of the variant formerly known as MRCPA(2)154,155)
and considers redundancies, but the EPV terms are not handled
(see eq 68 in ref 157). Themethod simplifies to a CEPA(0) in the
limit of a single-reference function, and therefore it is no surprise
that MRCPA(4) overestimates the effect of higher excitations
considerably (for more details see the comparisons in ref 31).
The method is size-consistent for noninteracting electron
pairs,155 it can be applied to excited states, but analytic gradient
calculations are not available.
Despite the successes of the MR-ACPF method, it was found

to overestimate the effect of the higher excitations.158 This led
Szalay and Bartlett158 in 1993 to suggest a modified version of the
method; the multireference averaged quadratic CC (MR-
AQCC) method142,158 should be viewed as the CEPA version
of the Meissner correction80 just as MR-ACPF is related to the
Pople correction. The functional form that was used can be
justified by distributing the correlation energy among all possible
electron pairs. This is in contrast to MR-ACPF where the
correlation energy is distributed among the noninteracting
electron pairs. Note that MR-AQCC retains all the attractive
features of MR-ACPF, including an energy functional, which
leads to an analytic energy derivative formulation,81 and applic-
ability to excited states. To enable the calculation of transition
moments, a linear response version of the method (MR-AQCC-
LRT) is available.159 This means simply that the correction uses
the ground-state instead of the excited-state correlation energy.
There were some attempts to also include redundancy effects in
the MR-AQCC-mc variant,160 where the correction is done in
the spirit of the MRCEPA method.103 Note that ref 160 also
suggests a procedure to include redundancy effects inMR-ACPF.
In test calculations and in application to Be2, F€usti-Molnar and
Szalay160,161 found that these methods performed excellently.
MR-AQCC-mc received little attention (see however CD-
MRCISD in subsequent text), most probably due to complicated
structure of the method and to the lack of analytical gradients. A
recent version of the MR-AQCC method by Szalay107 solves
some discontinuity issues by using a modified reference energy.
In 2001 Gdanitz162 suggested a modified version of the MR-

ACPF method, called MR-ACPF-2, which is essentially a com-
bination of the original MR-ACPF and the MR-AQCC parame-
trization. While for the double excitation space the original
MR-ACPF parametrizations81 were used, the limiting value of
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theMR-AQCCparametrization158was applied for the single excita-
tion block of the Hamiltonian. In this way the notorious over-
estimation of higher excitations within MR-ACPF was addressed,
and results similar to MR-AQCC were achieved.162

In 1994 Malrieu et al.163 derived the method called multi-
reference size-consistent self-consistent CI (MR-(SC)2-CI)
which is based on a single-reference variant164 and can be viewed
as an exact CEPA. It accounts for both EPV and redundancy
terms exactly, and therefore it is rigorously size-consistent.114

Themethod can be implemented in a diagonal shift (or dressing)
form as first suggested by Heully and Malrieu.165 Due to the
storage requirement of a vector of length nref times the number of
Q space functions, an extra cost that scales with the fourth power
of the number of orbitals,114 the method is much more expensive
than other variants discussed previously. However, this addi-
tional cost is smaller than that of the underlying MRCI calcula-
tions. The importance of this method cannot be overstated—
since it is the most rigorous among CEPA-type methods, it is
often used as benchmark. It has been shown, however, that it is
not significantly more accurate than MR-AQCC or MR-ACPF
(see refs 142 and 166). Similarly, as in the single-reference case,
the exact CEPA is not significantly better than the approximate
variants.141 Since no functional is associated with the MR-(SC)2-
CI method, no analytic gradient is available. There was an
attempt to construct a functional form under the name MR-
FCPF (multireference full coupled pair functional) by Meller
et al.,166 but it was necessary to introduce a geometry-indepen-
dent diagonal shift which is formally problematic.
Most recently, Mukherjee and co-workers have proposed

another family of multireference CEPA methods167 termed SS-
MRCEPA (state-specific multireference CEPA). These methods
have been derived from the SS-MRCC approximation168�172

(also known as Mk-MRCC) which is a realization of the Hilbert-
space-type multireferenc CC approach.173 As such, it is based on
an effective Hamiltonian, but state-specificity has been obtained
by explicitly including the reference space coefficients into the
amplitude equations. For more detail, see ref 172. Four basic
versions have been suggested. SS-MRCEPA(0) uses a CEPA(0)
approximation (all terms are linearized).168,179 SS-MRCEPA(2)

uses approximations in the spirit of CEPA(2).169 SS-MRCEPA-
(D) includes only the diagonal terms of the dressed operators174

and therefore is not orbital-invariant. Finally, SS-MRCEPA(I) is
an “exact CEPA” in the sense that it considers EPV terms
correctly.167 Redundancy is inherently considered in these approxi-
mations since this is an essential ingredient of the parent SS-MRCC
method.172 Detailed comparison of these variants can be found
in ref 175.
Recently, Ruttink et al.176 and Ben Amor et al.177 revisited the

problem of accounting for both EPV and redundancy terms in
CEPA-type approaches. Their new methods are a reconsidera-
tion of Ruttink’s idea used in their MRCEPA method103 and its
extension by F€usti-Molnár and Szalay in the MR-AQCC-mc
method.160 Ruttink et al.176 uses CEPA(1) arguments to extend
MR-CEPA, and therefore the method is called MR-CEPA1.176

The method of Ben Amor et al.177 is called class-dressed (CD)
MR-CISD and uses CEPA corrections depending on the excita-
tion class. The new methods show some improvement over
MRCEPA and MR-AQCC-mc, but they also share their feature
that the analytic energy gradient cannot be formulated easily.
Table 2 summarizes the facts of this subsection by listing most

CEPA-type methods and their properties. The theoretically most
advanced methods are MR-(SC)2-CI by Malrieu et al.163 and SS-
MRCEPA(I) by Mukherjee et al.171 since these are exact CEPA
methods. In addition, MR-AQCC-mc,160 MR-CEPA(2),169 MR-
CEPA1,176 and CD-MR-CISD177 are methods which account for
both EPV and redundancy effects. Still, in actual calculations,
MR-AQCC142,158 and MR-ACPF81 perform better, competing
with MRCC formulations178�180 unless higher excitations are
also considered in the latter.180,181 From a pragmatic point of
view, MR-AQCC and MR-ACPF have the advantages that
analytic gradients are available,118 that they can be readily used
to calculate properties, and that they can be applied to excited
states. CEPA methods should be preferred over the Davidson-
type correction since the correction is introduced in the equa-
tions. However, this property can introduce intruder-state pro-
blems, in particular if proper orbitals cannot be constructed.
Table 1 also includes the results of some CEPA-type methods

on the water example discussed previously with regard to the

Table 2. Properties and Implementation of Different Multireference CEPA-Type Methods

method

compensation

for EPV terms

handling of

redundancy reference space

availability

of gradients implementation

MR-LCCM144,145 no (CEPA(0)) no unrelaxed yes COLUMBUS118,119

MR-CEPA(0)81,147,149 no (CEPA(0)) no relaxed yes COLUMBUS118,119

QDVPT150 no (CEPA(0)) no eff Hamiltonian no MELDF282,283

MRCEPA103 no (CEPA(0)) averaged relaxed no GAMESS UK121,122,182

MRCPA(4)156 no (CEPA(0)) yes eff Hamiltonian no local (ALCHEMY183)

SS-MRCEPA(0)168 no (CEPA(0)) yes eff Hamiltonian no MRCC179,184

MC-CEPA153 Kelly’s CEPA no unrelaxed no Bochum code153,185�187

MR-ACPF81 averaged CEPA(2) no relaxed yes COLUMBUS,118,119 MOLPRO120

QDVPT-APC151 averaged CEPA(2) no relaxed no MELDF282,283

MR-AQCC142,158 averaged CEPA(1) no relaxed yes COLUMBUS,118,119 MOLPRO120

MR-AQCC-mc160 averaged CEPA(1) averaged relaxed no local160 (COLUMBUS118)

MR-(SC)2-CI163 exact CEPA exact relaxed no local163

CD-MRSDCI177 averaged CEPA(1) averaged relaxed no local177

MR-CEPA1176 CEPA(1) averaged relaxed no GAMESS UK182

SS-MRCEPA(2)169 CEPA(2) exact eff. Hamiltonian no local169

SS-MRCEPA(I)167 exact CEPA exact eff Hamiltonian no local167
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Davidson-type corrections. Again, CEPA(0)-type methods over-
estimate the correlation effect and result in energies that are too
low. Very similar NPE values can be observed for all other
methods. There are several detailed comparsions of these
methods in the literature, including refs 31, 142, 162, 176, 177,
179, and 180. Note that in the last two papers MR-AQCC and
MR-ACPF are also compared to various MR-CC methods.
2.1.4. Inclusion of Connected Triple, Quadruple, and

Higher Excitations.The size-consistency corrections discussed
above address primarily disconnected higher excitation effects,
those which are needed to restore size-consistency. Connected
higher excitation effects, on the other hand, represent “real”
higher excitations which appear also in coupled-cluster treat-
ments. This has the apparent consequence that these methods
cannot easily be classified as either CI or CC approaches. Since
this review focuses on MRCI methods, the present discussion is
limited to those which share some similarity to CI methods and
can therefore be implemented within CI codes.
Using the formalism of dressed Hamiltonians developed for the

(SC)2-CI method,164 Malrieu et al.188,189 introduced higher excita-
tions into a single-reference CI treatment. Meissner190,191 used the
coupled-cluster equations to derive corrections for connected triple
excitations. Nooijen and Le Roy192 also included some triple
corrections in the single-reference pXCISD approach along with
the size-consistency corrections (see above). Sherrill and Schaefer193

included higher excitation effects by partitioning the (natural)
orbital space according to the importance of the orbitals. Sychrovsky
and �Carsky194 used the Bk approximation1 in the triple and
quadruple excited space with respect to SR-CISD.
A very interesting novel approach to including higher excita-

tions has been developed by Bytautas and Ruedenberg195�198

who discovered that certain linear relationships exist between the
incremental correlation energy contributions arising from differ-
ent excitation levels when these increments, in turn, are con-
sidered as functions of increasing numbers of virtual natural
orbitals, added in order of importance (i.e., occupations). As a
result, the full correlation effects of quadruples, quintuples, and
sextuples, etc., can be obtained, using a limited number of
orbitals, by linear extrapolations from the doubles and triples
contributions. Notably the method, called correlation energy
extrapolation by intrinsic scaling (CEEIS), is effective for system-
atically approaching the full correlation energy of SRCI195 as well
as MRCI196 expansions, so that bond breaking is described
accurately. By additionally including extrapolations to the com-
plete basis set limit196 (as well as relativistic corrections), these
authors were able to calculate full diatomic potential energy
curves to extremely high accuracy.199�203

Recently, Khait et al.204 developed the new hybrid variational-
perturbational MRCISD(TQ) approach, which builds a non-
iterative correction to the MR-CISD energies in order to
approximate the effects of triple and quadruple excitations.
Several numerical studies suggest that MRCISD(TQ) recovers
the dynamic electron correlation in a balanced way, i.e., not
strongly dependent on the particular electronic state, and has
significant promise as a computationally tenable ultrahigh-preci-
sion approximation. Most recently, Kaith et al.106 introduced a
further variant (nR-MRCISD(TQ)), which is related to the Bk
method1 and can be used to calculate the energy of several states
at the same time (multiroot). Its noniterative variant is close to
the original MRCISD(TQ) of ref 204. Test calculations have
shown106 that the nR-MRCISD(TQ) method provides a very
high accuracy, even when there are strongly quasidegenerate

states and the nonparallelity errors are typically improved by an
order of magnitude relative to MR-CISD.
2.1.5. Approximate CI Methods. This section discusses

several methods in which the expansion spaces are approximated
relative to the MRCI or full-CI expansion space, or the Hamilto-
nian operator is approximated, or both.
2.1.5.1. Contracted MRCI Methods. There are two basic

contraction schemes used in CI calculations: internal and
external. Both are based on grouping together certain primitive
expansion functions. In an internally contracted MRCI (ic-
MRCI), the CI expansion space is generated by applying excita-
tion operators to the multiconfigurational reference wave func-
tion. In analogy to the SR case eqs 12 and 13

fjmæ;m ¼ 1:::Ndimg ¼ fjψ~0æ, jψ~ai æ, jψ~abij æ, jψ~abcijk æ, :::g ð47Þ
with

jψ~0 æ ¼ ∑
Nref

j
crefj jj; ref æ; jψ~ a

i æ � a†aaijψ~0æ;

jψ~abij æ � a†aa
†
bajaijψ~0æ; jψ~abcijk æ � a†aa

†
ba

†
c akajaijψ~0æ; :::

ð48Þ
This approach was proposed205�207 in the late 1970s and early
1980s. The ic-MRCI wave function is expanded as (cf. eq 16, the
form of the uncontracted MRCI wave function)

jψæ ¼ ~cojψ~0æ þ ∑
i, a

~cai jψ~ai æ þ ∑
i > j, a > b

~cabij jψ~abij æ

þ ∑
i > j > k, a > b > c

~cabcijk jψ~abcijk æ þ ::: ð49Þ

The coefficients of the underlying determinant expansion space
are seen to be given by products of the reference coefficients and
CI expansion coefficients. For example, the double-excitation
terms may be written

∑
i > j, a > b

~cabij jψ~abij æ ¼ ∑
i > j, a > b

∑
Nref

m
ðcrefm ~cabij ÞjψðmÞabij æ ð50Þ

where |ψ(m)ij
abæ (see eq 15) is a determinant in the uncontracted

expansion space. The reference coefficients cref are fixed by the
MCSCF calculation, so the number of variational parameters, the
~ci
a, ~cij

ab, ~cijk
abc, ... coefficients, is comparable to a SR expansion.

Because the product (cm
ref ~cij

ab) for fixed cm
ref does not have the full

flexibility of the uncontracted coefficients c(m)ij
ab of eq 16, the

contracted expansion space is a subspace of the full uncontracted
MRCI expansion space and the computed eigenvalues are
variationally bounded from below by the uncontracted MRCI
energies. See Shavitt208 for further discussion of the conse-
quences of the internal contraction approximation. The Hamil-
tonian matrix element contributions may be computed with
reduced density matrices within the occupied orbital space, and
once these density matrices are available, the computational
effort of each iteration of the optimization procedure is largely
independent of the number of reference functions. The main
advantage of the ic-MRCI scheme is that it requires less
computational effort and thereby allows the use of much larger
reference spaces than the traditional (uncontracted) MRCI
method. The most successful implementation of this approach
was reported byWerner andKnowles.209,210 In this implementation,
the expansion space is limited to single and double excitations,
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but only the double excitations are contracted; the full reference
space and the full space of uncontracted single-excitation con-
figurations are included in the expansion space. CEPA-type versions
(MR-ACPF, QDVPT,MR-CEPA(0)) have been introduced and
tested,211 and also MR-AQCC is available.120 The appropriate
version for excited states has also been proposed.212 A parallel
version has been implemented, and its efficiency has been
demonstrated.213 The ic-MRCI scheme, through its implementation
in MOLPRO,120 is very popular, and there is a very extensive list of
applications (over 1500) in the literature that use this method.
Unfortunately, in many applications the ic-MRCI method is

not considered as an approximate variant, and the resulting
contraction error (or uncertainty bound) is usually not discussed.
As should be clear from the discussion above, this is a rather
severe approximation that is usually valid, but there is no
systematic way to estimate the contraction error nor are there
systematic studies in the literature to assess these errors. For
partial studies on the accuracy of ic-MRCI see refs 214�216.
The MC-CEPA method of Fink and Steammler153 also uses

the internally contracted approximation.
Note in passing that the popular CASPT2method217�221 may

be considered an approximation of the ic-MRCI approach. This
is a “diagonalize-then-perturb” approach (see section 2.1.5.7) in
which the reference function is first determined with the
diagonalization of H within the reference space, and then the
parameters ~ci

a, ~cij
ab, ~cijk

abc, ... are determined with perturbation
theory. In the CASPT2 method, the expansion is limited up to
only contracted double excitations, and the second-order energy
is determined from the first-order corrections to the wave
function. This energy is not bounded from below by either the
uncontracted MRCI energy or the full-CI energy.
The externally contracted MRCI concept was introduced by

Siegbahn222 on the basis of the single-reference variant.223 This is
a “perturb-then-diagonalize” approach (see section 2.1.5.7). By
grouping together configurations with the same internal parts
and freezing their relative weights (e.g., for double excitations),

jmðijÞ; ciæ ¼ ∑
a > b

cðmÞabij jψðmÞabij æ ð51Þ

with the contraction coefficients determined from first-order
perturbation theory

cðmÞabij ¼ Æψ0jHjψðmÞabij æ
E0 � ÆψðmÞabij jHjψðmÞabij æ

ð52Þ

the number of variational parameters is drastically reduced. A
variant in which the denominator is computed with orbital
energy differences (i.e., Møller�Plesset PT rather than Epstein�
Nesbet PT) was also discussed.222 Although the contraction
coefficients are defined with low-order PT, the final energies are
computed from the eigenpairs of the H matrix in the space
{|m;refæ,|m(i);ciæ,|m(ij);ciæ;m = 1...Nref}. In a GUGA implemen-
tation, which addresses the problems associated with enumerat-
ing the individual terms in this method, the external (i.e., virtual)
orbitals may be placed at the bottom of the graph and the
dimension of the contracted expansion space is then the number
of internal walks in the Shavitt graph.222 This expansion space,
which has a larger dimension than the reference space alone, is a
subspace of the full uncontracted space, and therefore the computed
eigenvalues are variationally bounded from below by the
uncontracted MRCI energies. The method is best suited for
ground and low-lying valence excited states, but less so for higher

lying excited states with significant external orbital occupations.
It was shown that the loss of correlation energy is usually less than
2%. The effort required is comparable to a single iteration of an
uncontractedMRCI calculation. It was implented as a conventional
CI method (the matrix elements were explicitly constructed and
stored) in which the eigenpairs were solved iteratively.222 Unlike
the internally contracted method, the effort depends directly on
the dimension of the reference space (or, more specifically, on
the number of internal walks). Consequently, it is not as popular
as the ic-MRCI and CASPT2 approaches which are much more
efficient for larger reference expansions. An analytic gradient has
been formulated by Lee,224 but, to our knowledge, it was never
implemented into computer code. Wang et al.225 have recently
suggested an improved procedure for the perturbational deter-
mination of the external contraction coefficients.
The simultaneous use of both internal and external contrac-

tion was suggested byWang et al.226 This particular implementa-
tion is based on an improved hole�particle formalism.227

Although the initial results were very promising,226 only a few
applications have been reported.
2.1.5.2. Graphically Contracted Function Method. In the

graphically contracted function (GCF) method,228�237 the wave
function is represented using the graphical unitary group
approach6,28,238,239 in which the expansion CSFs of the unitary
group approach240�242 are represented graphically. The wave
function is expanded as a linear combination of GCFs

jψæ ¼ ∑
NGCF

P¼ 1
cPjPæ ð53Þ

where the basis functions |Pæ in turn are contractions over the
CSF basis of dimension NCSF

jPæ ¼ ∑
NCSF

m¼ 1
xPmjmæ ð54Þ

The contraction coefficients xm
p are products of arc factors

associated with the arcs of the Shavitt graph

xPm ¼ Π
n

u¼ 1
αP
μðu,mÞ ð55Þ

where μ(u,m) denotes the arc associated with orbital u in CSFm. In
contrast to the internally and externally contracted CI approaches,
the arc factors are contraction coefficients over the full orbital range.
Each contracted basis function |Pæ corresponds to a particular set of
arc factors αP. Consequently, the wave function depends on the
linear coefficients cP and on the nonlinear arc factor parameters
αP. Initial calculations show that NGCF dimensions typically in
the range of 10�20 are sufficient to achieve chemical accuracy231

for single-state calculations. For full-CI Shavitt graphs, the total
number of variational parameters grows only as O(NGCFN

2n)
rather than exponentially nN as in the full-CI expansion.230,232

An energy expectation value requires the computation of
Hamiltonian

HPQ ¼ ÆPjHjQ æ ¼ ∑
p, q

hpqÆPjEpqjQ æ þ 1
2 ∑p, q, r, s

gpqrsÆPjepqrsjQ æ

ð56Þ
and overlap SPQ = ÆP|Qæ (metric) matrix elements in the
contracted basis. The wave functions are optimized to minimize
the energy with respect to both the linear coefficients c and the
full set of nonlinear parameters α. The variational energy
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corresponds to a solution of the generalized symmetric eigenva-
lue equation

Hc ¼ ScE ð57Þ

The HPQ and SPQ matrix elements depend on the arc factors αP

and αQ, and thus the linear expansion coefficients c � c(α) and
the energy E � E(α) depend on the full set of arc factors. An
overlap matrix element SPQ may be computed with a recursive
algorithm that requires O(N2n) effort for full-CI Shavitt graphs.228

The full overlap matrix thereby requires O(NGCF
2N2n) effort.

The scaling for other expansions is discussed in ref 228. A
Hamiltonian matrix elementHPQmay be computed with a recursive
algorithm229 that requires O(N2n4) effort for full-CI Shavitt
graphs, and the full matrix H thereby requires O(NGCF

2N2n4)
effort. Given a set of arc factors, a single HPQ evaluation requires
about the same effort as a single iteration of an SCFmethod. The
optimization of wave functions requires the gradients of the energy
with respect to the nonlinear arc factor parameters. A recent gradient
algorithm has been implemented that requires O(NGCF

2N2n4)
effort for full-CI Shavitt graphs;230 in fact the gradient costs about
three times that of the energy itself. Hamiltonian matrix and
gradient timings have been reported237 for full-CI Shavitt graphs
as large as n=N= 180 andNCSF≈ 10104. The overlap ÆD|ψæwith
an arbitrary Slater determinant |Dæmay be computed with effort
that scales asO(NGCFNn); timings on a laptop computer of a few
milliseconds per determinant have been reported for full-CI
Shavitt graphs233 as large as n = N = 260 and NCSF≈ 10152. The
spin-density matrix, which may be used to compute M-depen-
dent expectation value properties (see eq 11), may be computed
with effort that scales as O(NGCF

2N2n2) for full-CI Shavitt
graphs; timings have been reported234 for systems as large as
n = N = 360 and NCSF ≈ 10212. The method has been extended
to include spin-orbit interaction using multiheaded Shavitt
graphs.232,235

The computational effort for these quantities does not depend
directly on the CSF expansion length NCSF; thus, this method
allows wave function expansions with NCSF values that are many
orders of magnitude larger than can be accommodated by
traditional electronic structure methods. For all of these matrix
elements and properties, the graphical representation of the
underlying CSF expansion space along with the orbital-by-orbital
contractions of the basis functions provided by eq 55 allows for
the development of fully recursive algorithms, thereby eliminat-
ing from practical consideration any direct dependence on the
large values of NCSF.
The GCF method is characterized by several important

features. Because the method is formulated in terms of spin
eigenfunctions using GUGA, it does not suffer from spin con-
tamination or spin instability. Open-shell spin eigenfunctions are
included in the wave function expansions. This allows significant
flexibility in the individual GCF basis functions to describe
radicals and other open-shell electronic states. For example, a
single expansion term, NGCF = 1, is sufficiently flexible to
correctly dissociate the triple bond of N2 to the high-spin 4S
ground-state atomic fragments. There are no artificial excitation-
level or occupation restrictions with respect to a reference
function or reference space. Because the wave function is
expanded as a linear combination of NGCF basis functions, the
method can be used for both ground and excited electronic
states, the increased wave function flexibility leads to more accurate
wave functions, and this expansion allows the straightforward

computation of transition moments, nonadiabatic coupling, and
other properties that at present can only be computed reliably
with MCSCF and MRCI approaches. In analogy to the subspace
equation of the Lanczos or Davidson methods eq 29, the
eigenvalues of eq 57 satisfy the subspace bounds relations of
eqs 4 and 5. State averaging allows the arc factors to be
optimized for a weighted average of states rather than for an
individual state.243

The GCF method is still relatively immature, and only a
few chemical applications have been reported. These
include230,231,243 the dissociation of the ground 11Σ+

g state of
N2, the symmetric dissociation of the ground 11A1 state of H2O,
the reaction path curves for the 1�21A1 states of Be + H2 f
BeH2, and the dissociation of the X

1Σ+
g, B

1Δg, and B01Σ+
g states

of C2. To date, the main difficulty with general application of the
method is the nonlinear optimization of the arc factor
parameters.231

2.1.5.3. Density Matrix Renormalization Group. The expo-
nential scaling nN of the number of CSFs (or determinants) with
system size limits the practical applicability of the CASSCF
approach to active spaces with approximately 16 electrons and
orbitals. One approach that offers the possibility to eliminate this
scaling is the density matrix renormalization group (DMRG)
method originally developed by White in the context of con-
densed matter.244,245 Although the DMRG method is relatively
recent in the field of ab initio quantum chemistry, it has already
proven useful in addressing questions that are outside of the
realm of traditional quantum chemistry approaches.244�273

Within the language of DMRG, orbitals occupy sites of a one-
dimensional lattice. In the two-site DMRG algorithm, the lattice
is divided into three blocks: (i) the system block, (ii) the
environment block, and (iii) two sites in between (note that some
authors in the literature use left and right to denote the system
and environment blocks, respectively). Each spatial orbital has
four possible Fock states |σæ = {|00æ,|10æ,|01æ,|11æ}, using the
spin-orbital occupation number representation. Hence, the total
number of many-electron states (determinants) for each of the
three blocks is 4ns, 42 = 16, and 4n�ns�2, where ns is the number of
sites (orbitals) in the system block, and n is the total number of
correlated orbitals. The wave function of the total system (also
called the superblock) is given by the tensor product space of the
many-particle states of the blocks

jψæ ¼ ∑
aSσSσEaE

ψaSσSσEaE jaSæ X jσSæ X jσEæ X jaEæ

¼ ∑
iS iE

ψiS iE jiSæ X jiEæ ð58Þ

where the middle block is split into the Fock states |σsæ for the
orbital next to the system block and |σEæ for the orbital next to
the environment block. To ensure that the wave function has the
proper symmetries (i.e., it has the right number of electrons and
spin projection Sz), many terms are excluded from eq 58. Even
with the exclusion of these terms, the number of parameters in
eq 58 still scales exponentially with system size. To overcome this
exponential scaling, DMRG restricts the number of many-
electron states that describe the system and environment blocks.
The central question of DMRG then becomes: Given a pre-
defined threshold (usually denotedM) for the maximum number
of states, how does one obtain the optimal many-electron states?
The DMRGwave function is optimized via a sweep algorithm,

where sites are traversed sequentially, and each step in the sweep
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consists of three parts:248 blocking, diagonalization, and decima-
tion. At the start of the sweep, ns is chosen to be small enough
such that the number of basis states in the system block does not
exceed M, and, hence, all basis states {|asæ} may be computed
explicitly. The Hamiltonian operator and elementary creation
and annihilation operators, as well as other operators that are
needed to compute the Hamiltonian for the superblock are
evaluated in this basis.246 In addition, a suitable basis with
dimension M for the environment block must also be available
(from either a warm-up procedure248,250,262,264,267 or the pre-
vious sweep).
In the blocking step of the algorithm, the system and environ-

ment blocks are enlarged by one site as in eq 58, and the
Hamiltonian matrix for each new block is computed as a direct
product of theHamiltonianmatrices and elementary operators in
the old bases.246 The dimension of the newmany-electron spaces
(and the associated operators) is 4M, and the most expensive
part of the blocking step scales250 as O(M2n3).
During the diagonalization step, the lowest few eigenpairs of

the superblock Hamiltonian are computed using an iterative
subspace diagonalizationmethod such as the Davidson algorithm
(see section 2.1.2). These methods require the repeated evalua-
tion of matrix vector products, wS,E =HS,ExS,E, whereHS,E is the
superblock Hamiltonian (never explicitly computed or stored)
with dimension 16M2. It may seem that evaluation of these
matrix�vector products requires a computational effort propor-
tional to O(M4). However, utilizing the fact that the superblock
Hamiltonian is a sum of products of operators that act on the
system and environment blocks

½HS, E�iSkE;jS lE ¼ ∑
α

Hα
iS jS
Hα

kE lE
ð59Þ

reduces the effort250 toO(M3n2). In eq 59, indices with an S or E
subscript denote many-electron states of the system or environ-
ment block, respectively, and the sum is over all terms of the
Hamiltonian. Note that the efficiency of the subspace method
also depends on the quality of the initial guess for the eigenvector
and the preconditioner used for computing vector updates.
In the decimation step, the many-electron reduced density

matrix for the system block is computed as

FiS jS ¼ ∑
kE

jψiSkEæÆψjSkE j ¼ ∑
4M

i¼ 1
wijθiæÆθij ð60Þ

where the eigenvalues in the spectral representation obey244�246

Σi wi= 1. Note that this procedure is similar to the construction of
natural orbitals; however, the eigenvectors |θiæ of the density
matrix in eq 60 are many-electron functions rather than one-
electron orbitals. It can be shown that the eigenvectors of the
density matrix minimize the distance in the quadratic
norm244,245,272,273 |||Ψæ � |Ψ~ æ||2, where the approximate wave
function is obtained by retaining the M eigenvectors with the
highest eigenvalues244�246,248,256 in eq 60.
Using these eigenvectors, the relevant operators for the system

and environment blocks are transformed according to

~A ¼ OAOT ð61Þ
Since one such transformation requires a computational effort
that is proportional to the cube of the number of states retained,
and there are on the order of n2 operators that need to be
transformed, the overall cost of this step scales250 as O(M3n2).
The DMRG sweep is then continued at the blocking step.

A DMRG sweep is complete when one end of the lattice is
reached. At this point the system and environment are inter-
changed, and the sites are traversed in reverse order. The DMRG
sweeps continue until the energy is converged with respect to
sweeping. The computational effort for a single sweep of the
DMRG algorithm scales polynomiallyO(M3n3) +O(M2n4) with
the number of active orbitals.250

As can be readily seen from eq 60, the accuracy of the DMRG
method depends on the number of states retained during the
decimation step. Indeed, it has been pointed out that DMRG is
expected to perform best for one-dimensional problems (such as
the one-dimensional Hubbard model and other one-dimensional
lattice models) and the treatment of higher dimensional pro-
blems (such as the two-dimensional lattice models or general
three-dimensional molecular systems) should present a greater
challenge since the decay of the eigenvalue spectrum of the
density matrix slows exponentially with inverse system size.272 As
discussed inmore detail in ref 248, the leading term in the error in
the DMRG energy (δE) may be approximated as

lnjδEj = � kðln MÞ2 ð62Þ

where k is a model-specific constant related to the correlation
length. In addition to errors associated with truncation, the
ordering of the orbitals introduces an “artificial lattice
correlation”248 that can affect the convergence of DMRG. Chan
and Head-Gordon248 used a reverse Cuthill�McKee reordering
of the orbitals to make the one-electron integral matrix close to
band-diagonal. Mitrushenkov et al.263 suggest ordering the
orbitals on the basis of the diagonal two-electron integrals and
orbital energies. Moritz et al.268 employ several criteria on the
basis of the one- and two-electron integrals as well as a genetic
algorithm to examine the optimal orbital ordering in DMRG
calculations involving the chromium dimer. Legeza et al.266 find
that the reverse Cuthill�McKee ordering of the orbitals, in
addition to reducing the error in the energy for a given number of
states, also reduces the number of sweeps for converging the
DMRG calculations.
Early applications of DMRG to ab initio quantum chemistry

focused on assessing the applicability of the method for small
molecules. Mitrushenkov et al.263 find that the full-CI spectro-
scopic constants for Be2, HF, and N2 are accurately reproduced
with 500 states. Chan and Head-Gordon find that less than a
1000 states are sufficient to yield DMRG energies with mEh or
better accuracy for water in a DZP and TZ2P basis set.248,249 For
the potential energy curve of the nitrogen dimer in a cc-pVDZ
basis set with the 1s electrons on nitrogen frozen, Chan et al.251

find that DMRG with a 1000 states yields results with mEh
accuracy and outperforms coupled-cluster theory with up to
hextuple excitations. In addition, their results indicate that the
inclusion of the 1s core into the DMRG calculations does not
significantly affect the number of states required to achieve sub-
mEh accuracy. Low-lying excited states of LiF,266 CH2,

267

HNCO,259 acenes as large as pentacene (minimal basis and only
the π orbitals and electrons are correlated),258 CsH,269 and
CoH270,271 have been studied with DMRG. More recently,
Kurashige and Yanai264 have applied their parallel DMRG code
to assess the accuracy of DMRG for applications to transition
metal complexes. Their results indicate that the number of
states required to achieve sub-mEh accuracy for these complexes
requires a larger number of states. For the chromium dimer with
a 3024 active space (24 electrons distributed in 30 orbitals; see
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section 2.2.3 for a discussion of wave function expansion spaces),
the M = 6400 results are approximately 1 mEh above the
extrapolated M = ∞ DMRG energy, and the error is reduced
by approximately a factor of 2 forM = 10 000. These calculations
are the largest reported DMRG expansions; on four Intel Xeon
2.66 GHz Quad Core CPUs (using four threads per CPU) a
single sweep requires 6.2 h or more of wall time.264 Due to the
number of sweeps needed to converge the energy, DMRG is
more expensive than single-reference methods such as CCSD-
(T).269 Nonetheless, one has to consider that the number of
sweeps can be reduced by optimal ordering of the orbitals and
that DMRG is applicable to systems with strong static correlations.
In addition, the polynomial scaling of the DMRG algorithm allows
the essentially exact treatment ofmuch largerHilbert spaces than are
practical with traditional methods such as full-CI.
More recently, Hachmann et al.253 have developed the local

DMRG method (LDMRG) that utilizes integral screening and
localized orbitals to reduce the computational cost of the
LDMRG method to O(M3n2) + O(M2n2) per sweep. Due to
the local nature of electron correlation, for molecules that are
extended along one of their directions, the accuracy of LDMRG
does not depend on the number of states, and the effort scales
quadratically with the number of orbitals.253 Applications of
LDMRG to all-trans polyenes (maximum active space of 4848)
and linear hydrogen chains (as large as (H2)50 with an active
space of 100100) demonstrate that LDMRG withM = 250 yields
energies with μEh accuracy. For the largest hydrogen chain with
M = 250, a single sweep took 73 min on 18 2.0 GHz Opteron
processors.253 LDMRG has since been applied to study other
strongly correlated π-systems such as (i) the radical character of
acenes254 (as large as 12-acene with an active space of 5050), (ii)
the excited states of the acenes258 (as large as 5-acene with an active
space of 2222), (iii) excitation energies and oscillator strengths in
β-carotene256 (2222 active space and orbital optimization), and
(iv) spin gaps in the poly(m-phenylenecarbenes)265 (4646 active
space).
2.1.5.4. Individual Selection. The individually selected CI

method with extrapolation was introduced by Buenker and
Peyerimhoff274�276 in the 1970s (for a review up to 2000, see
ref 277). The idea is to partition the CI expansion space into two
subspaces: one contains the most important configurations,
which are treated explicitly, while the other ones are either
completely neglected or their contributions are approximated
by perturbation expressions. The energies are computed with
extrapolation methods to estimate the full-CI values. The
method of Peyerimhoff and Buenker has been implemented into
the MRD-CI program package,278 which was widely used by
various groups to study problems in several fields of chemistry
including spectroscopy, reaction mechanisms, and so on. The
idea of the individually selected MRCI method was also used by
Whitten and Hackmeyer,279 in the CIPSI program by Malrieu
and co-workers,280,281 and in the MELDF program of Davidson
and co-workers.282 While older programs using individual selec-
tion could not use the direct-CI algorithm, more recently several
programs have appeared which address this limitation including
MELDF,283 a code byHarrison,284 CIPSI,285,286 andMRD-CI287

itself. Perhaps the most advanced algorithm has been presented
by Hanrath and Engels288 in their DIESEL-MR-CI program. A
massively parallel implementation of selected CI has been
implemented by Stampfusset et al.289,290

A general selection procedure has been developed by Bytautas
and Ruedenberg291 that focuses on identifying independently all

important configurations (rather than “configurational dead-
wood”) among the quadruple, quintuple, and sextuple excita-
tions. This “configurational livewood” is deduced in advance, on
the basis of information extracted from double and triple excita-
tions so that all important terms can be included in constructing
the wave function. The procedure is notably effective for the a
priori accounting of all configurations required for a specified
accuracy in a reference space, as illustrated for the CISDTQ56
wave functions of the molecules HNO, N2, and NCCN.291

2.1.5.5. Local Approaches. Local approaches for CI and
CEPA were first applied by Saebo and Pulay,292 following the
same approach as their local perturbation theory. Walter and
Carter293 used the same techniques to first define a local MR-
CISD which eliminates simultaneous excitations from widely
separated internal orbitals. Shortly later they extended the
method to use the locality of the virtual orbitals as well.294 An
ACPF version was also constructed and tested.295 Similar
procedures have been put forward by Bories et al.,296 where
the localized orbitals have been obtained from the LCASSCF
(local CASSCF) approach of Maynau et al.297 Recently, a linear
scaling version of the local MR-CISD method has been given by
Chwee and Carter298 and more recently further improved by
Cholesky decomposition (CD-LMRCISD for Cholesky-decom-
position local MR-CISD)299 and density fitting approach.300

Applicability to excited states has been also demonstrated.301

Reinhardt et al.302,303 have also developed a local contracted
CI method. In this approach localized bonds are used to define
contracted double excitation functions. The Hamiltonian of the
system is built from the small Hamiltonians of the localized
fragments. CEPA versions and inclusion of higher excitations are
also discussed.303

2.1.5.6. Pseudospectral Methods. Pseudospectral methods
were introduced in quantum chemistry by Friesner.304,305 The
details of this approximation have been reviewed by Martinez
andCarter.306 A pseudospectral version of full-CI was introduced
by Martinez et al.307 and of double-excitation CI (CID) by
Martinez and Carter.308 The firstMRCI application was reported
by Murphy et al.309 and shortly afterward by Martinez and
Carter.310,311 Although the pseudospectral CI methods are very
precise, i.e., only small error of a few tenths of a mEh is introduced
with respect to the traditional version, the savings in computer
time is minimal. Carter and Walter312 report speedups of ∼3.7
for SR-CID and even smaller speedups of ∼2.2 for MR-CISD.
Reynolds et al.313 combined the pseudospectral methods with
local treatment of correlation but reported “only meager com-
putational savings”.312 An improved implementation was reported
byReynolds andCarter314with overall gains in computer time in the
range of 3�5, but also with considerable reductions of disk usage. A
later version of mixed local and pseudospectral treatment was
published by Walter et al.315 with speedup of over a factor of 7.
For the sake of completeness, note that the term “reduced scaling

MR-CI” has been used by Carter et al. (e.g., see ref 312) to cover
both the localized approach and/or pseudospectral method.
2.1.5.7. Multireference Perturbational Approaches. A de-

tailed discussion of multireference perturbation theory (PT)
approaches is out of the scope of this review for two reasons:
(i) special techniques different from MRCI are used, and (ii)
the theory involved is very diversified and therefore a detailed
discussion would be very lengthy. However, MRCI and
multireference PT approaches are often used together in applica-
tions, and a short summary of different versions is perhaps of
interest for the reader of the present MRCI review.
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There are two basic ways to generalize perturbation theory for
multireference situations. One is the quasidegenerate perturba-
tion theory (QDPT) first introduced by Brandow316 and later
developed by others.317�321 In Brandow’s original formulation
the reference space was chosen as a CAS, and the many-electron
space, as usual in perturbation theory, was represented by
determinants. Since the theory closely follows many-body per-
turbation theory, the acronym MR-MBPT was often used for
these methods. Because of the QDPT background, these meth-
ods lead to the diagonalization of an effective Hamiltonian (often
called “perturb-then-diagonalize”) which leads to a simultaneous
description of several states. However, this approach results often
in the appearance of intruder states, expansion terms that are
outside of the reference space with low energies, sometimes even
lower than some of the reference space energies, and whose
contributions are not described well with PT expressions. To
avoid intruder states, a formulation with a restricted reference
space was introduced by Hose and Kaldor318 and later by Meissner
and Bartlett,319 while a different partition was used by Kozlowski
and Davidson322 and by Nakano.323 Malrieu et al.321 suggested
the use of so-called intermediate Hamiltonians, which are built
from only a few functions of the CAS model space (see also
below). We note in passing that we have previously discussed the
closely related quasidegenerate variational perturbation theory
methods by Cave and Davidson149,150 and Murray et al.151

among CEPA-type MR methods (section 2.1.3.2).
The other possibility is the use of “diagonalize-then-perturb”

type methods, which usually start with a particular state obtained
from an MCSCF calculation and then follow similar lines as in
Møller�Plesset PT (therefore the name MR-MP is often used).
This state-specific formulation has clear practical advantages,
which accompany the theoretical disadvantage of lack of rigorous
size-extensivity. The closest analogy to the SR case can be
obtained with an internally contracted formulation.205 The
GVB-MP2 of Wolinsky and Pulay324 was perhaps the first
successful application of this technique (see also the discussion
of earlier methods in ref 324). Roos and co-workers217�221

introduced their own version under the name CASPT2 which
has became the most popular implementation (see also ref 123).
Versions not using internal contraction have been proposed by
Murphy and Messmer,325,326 Kozlowski and Davidson,327 and
Hirao328,329 (closely related toNakano’sMC-QDPTmethod323).
The latter is implemented in GAMESS.121,122 CASPT2 and
related methods have been reviewed recently by Pulay.330

Dyall331 showed that a proper zero-order MR Hamiltonian
should include also two-electron terms. The NEVPT2 (N-
electron valence state perturbation theory) method by Malrieu
and co-workers332,333 is based on this proposition. This method uses
excitation classes, an idea similar to the considerationof redundancies
inCEPA-typemethods.103 The drawback of thismethod is its formal
complexity and dependence of the results on orbitals labels.330 A
quasidegenerate version has also been proposed recently.334

The disadvantage of the diagonalize-then-perturb methods is
that they do not take into account the relaxation of the reference
functions due to the correlation introduced by perturbation. This
relaxation may be included by using the above-mentioned
intermediate Hamiltonian idea by Malrieu et al.,321 i.e., including
a few of these reference functions in the perturbation ansatz, while
avoiding the disadvantages of full QDPT theory. Such methods
have been proposed by Shavitt208 (see also Stahlberg335) and by
Hoffman and co-workers336�340 under the name GVVPT
(generalized Van Vleck perturbation theory). The latter method

has proven to yield quite accurate results in some complicated
situations,336 and also analytic gradients are available.340

Finally we mention that interesting new ideas have been pro-
posed by Surján et al.341�343 in their MC-PT (multiconfiguration
PT) versions, by Rolik and Szabados344 in multipartition multi-
reference many-body perturbation theory, and by Mukherjee and
co-workers in their state-specific (SS) MR-MBPT method.345,346

2.1.5.8. Semiempirical Approaches. Semiempirical MRCI
approaches could also be considered as approximations to MRCI.
These are not covered in this review since themain approximation is
the formation of the underlying semiempirical Hamiltonian and is
therefore outside of the scope of the present study. These methods
are, however, important within certain fields of chemistry; therefore
the interested readers are referred to recent applications (e.g., see
refs 347�350). A new implementation of MRCI in the semiempi-
rical framework has been reported recently by Lei at al.351

2.1.6. Transition Moments. The calculation of transition
moments between different electronic states is required, for
example, for the simulation of absorption and emission spectra.
This calculation is straightforward if in the CI expansion the same
orbital basis is used for all states. This is not always the case,
considering especially, but not only, the CASSCF method where
it may be desirable to perform independent calculations for different
states. To take such cases into account, efficient methods have
been developed on the basis of biorthogonal orbitals for full-CI
by Moshinsky and Seligman.352 On the basis of this work,
Malmquist353 andMalmquist and Roos,354 within the framework
of the restricted active space SCF (RASSCF) approach, have
developed the CAS and RAS state interaction (CASSI and
RASSI) methods, respectively, which have been applied successfully
in many cases (see, e.g., refs 355 and 356). An extension to the
internally contracted CI method has been reported by Mitrush-
chenkov and Werner.357 Calculation of the transition moments
at the MR-AQCC and MR-ACPF levels is also possible.159

2.2. MCSCF Method
TheMCSCFmethod corresponds formally to aCI expansion for

the wave function in which both the orbitals and the configuration
expansion coefficients are optimized. However, practically there are
also numerous other important distinctions in themethods. First the
formalism for the MCSCF method is briefly reviewed. More com-
plete reviews of MCSCF methodology, implementations, and
applications are given in refs 19, 20, 214, 217� 219, 358, and 359.
2.2.1. MCSCF Wave Function Parameterization. The

optimization of the orbital variations and the configuration
expansion coefficients first requires a definition of the variational
parameters. This is complicated by the orthonormalization
constraints on the orbitals and the configuration expansion
coefficients. The configurations may be chosen to be either
determinants or CSFs. A CSF expansion is assumed in this
discussion, but the expressions in terms of primitive Slater
determinants follow in an analogous manner. One of the
common parametrizations for the orbital variations is based on
the fact that an orthogonal matrix U may be parametrized in
terms of the elements of the skew-symmetric matrix K.

U ¼ expðKÞ ¼ 1 þ K þ 1
2
K2 þ ...

þ 1
m!
Km þ ... ð63Þ

with Kpq =�Kqp. The unique elements of K are unconstrained, a
feature that simplifies the formulation of the iterative wave
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function optimization and also the subsequent formulation of
analytic gradients which is discussed in section 2.5. The formal-
ism in this section focuses on real orbital and configuration
coefficients. In many practical calculations, the molecular orbitals
are chosen to transform as the irreps of the molecular point
group. In these situations, the orbitals within each irrep may be
grouped together and the transformation matrix U and the
parameters K assume a block-diagonal form. Given the orbital
matrix K there is a corresponding one-electron operator

K ¼ ∑
p, q

KpqEpq ¼ ∑
p > q

kðpqÞðEpq � EqpÞ ð64Þ

It is convenient to use the unique elements of the vector k (of
length n(n� 1)/2) in formulating the orbital variations. Given an
initial reference orthonormal orbital basis u0, and an arbitrary trial
orbital basis defined asu =u0U, an arbitrary determinant or CSF
that is written in terms of these two bases satisfies the relation

jj;jæ ¼ expðKÞjj;j0æ ð65Þ
Because this relation is satisfied for a single configuration, it is
also satisfied for an arbitrary linear combination of determinants
or CSFs.
Similarly, the CSF coefficient variations are formulated in

terms of the current reference wave function |mcæ defined with
the CSF coefficients c and some arbitrary, unnormalized, ortho-
gonal wave function

jpæ ¼ ∑
Nmc � 1

m¼ 1
p^mjm^æ ¼ ∑

Nmc � 1

m¼ 1
pmj~mæ ð66Þ

The basis |m^æ is some explicit representation of the orthogonal
complement to |mcæ. This basis is useful for formal derivations,
but the CSF basis is more useful for computer implementations.
Several choices for this orthogonal complement basis are dis-
cussed in ref 19. In the second expression in terms of the
primitive CSFs |~mæ, the vector p satisfies c 3 p = 0. The CSF
coefficient variations may then be written with the operator

expðPÞ ¼ 1

þ ðjmcæ, jpj�1jpæÞ cosjpj � 1 �sinjpj
sinjpj cosjpj � 1

 !
Æmcj

jpj�1Æpj

 !
ð67Þ

with

P ¼ jpæÆmcj � jmcæÆpj ¼ ∑
m

pmPm ð68Þ

and Pm = |mæÆmc| � |mcæÆm|. In this form, it is clear that the
operator exp(P) defines a plane rotation between the two
normalized basis vectors |mcæ and |p|�1|pæ within the CSF
expansion space, and in particular

expðPÞjmcæ ¼ cosjpjjmcæ þ sinjpjðjpj�1jpæÞ ð69Þ

This shows how an arbitrary normalized vector within the CSF
expansion space depends on the direction p, which defines the
plane, and on the magnitude |p|, which defines the angle of
rotation within this plane. This expression also shows how, given
a reference wave function c and a set of variational parameters p, a
new trial wave function is constructed, with no further numerical
approximation, for the subsequent iterations. These two operators

allow an arbitrary trial wave function, with arbitrary orthonormal
orbitals and arbitrary normalized CSF coefficients, to be written

jψtrialæ ¼ expðKÞ expðPÞjmcæ ð70Þ

2.2.2. MCSCF Optimization Methods. The expectation
value for the trial function in eq 70 may be written as

Etrial ¼ ÆψtrialjHjψtrialæ
¼ Æmcjexpð � PÞ expð � KÞH expðKÞ expðPÞjmcæ ð71Þ

The commutator expansion for the exponential operators allows
the expansion of the trial energy in terms of the parameters
λT = (kT,pT).

Etrialðk, pÞ ¼ ÆmcjH þ ½H,K� þ ½H, P� þ ½½H,K�, P�
þ 1
2
½½H,K�,K� þ 1

2
½½H, P�, P� þ :::jmcæ

¼ Emc þ k
p

 !T
fmcorb
fmccsf

 !

þ 1
2

k
p

 !T
Gmc

orb, orb Gmc
orb, csf

Gmc
csf , orb Gmc

csf , csf

 !
k
p

 !
þ ...

ð72Þ
The elements of the wave function optimization gradient fmc and
symmetric Hessian Gmc are

f mcpq ¼ Æmcj½H, Epq � Eqp�jmcæ ð73Þ

f mcj ¼ Æmcj½H, Pj�jmcæ ð74Þ

Gmc
pq, rs ¼

1
2
Æmcj½½H, Epq � Eqp�, Ers � Esr�

þ ½½H, Ers � Esr�, Epq � Eqp�jmcæ ð75Þ

Gmc
pq, rs ¼ Æmcj½½H, Epq � Eqp�, Pj�jmcæ ð76Þ

Gmc
j, k ¼ Æmcj½½H, Pj�, Pk�jmcæ ð77Þ

Applying the variational condition to the trial energy gives

∂Etrialðk, pÞ=∂k
∂Etrialðk, pÞ=∂p

 !
¼ 0

0

 !
¼ fmcorb

fmccsf

 !

þ Gmc
orb, orb Gmc

orb, csf

Gmc
csf , orb Gmc

csf , csf

 !
k
p

 !
þ ...

ð78Þ
This infinite-order expression has no closed-form solution, so
numerical iterative methods must be used to solve for the k and p
parameters. Various iterative optimization methods involve
truncation of the optimization equation (usually at first or second
order, combined also with approximations to some of the matrix
elements) along with a replacement of the reference wave func-
tion |mcæ by |ψtrialæ using the approximate k and p parameters
according to eq 70 for the subsequent iteration. When convergence
is achieved, the gradient fmc is zero and a solution to the nonlinear
equation is obviously given by λ = 0. The simple truncation at
second order, resulting in a Newton�Raphson iterative procedure,
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shows notoriously poor global convergence behavior, and con-
sequently various stabilization methods are imposed in order to
overcome these numerical difficulties.19,219,358,360,214 In some
situations, it is desirable to parametrize the trial energy in terms
of the orbital variations only, along with the assumption that the
CSF coefficients are always optimal. The appropriate trial energy
expression in this case is written

EtrialðkÞ ¼ Emc þ kTfmcorb

þ 1
2
kTðGmc

orb, orb �Gmc
orb, csf ðGmc

csf , csf Þ�1Gmc
csf , orbÞk þ ...

ð79Þ
This equation, based on the partitioned orbital Hessian matrix,
also allows for the analysis of the eigenvalue spectrum of the wave
function Hessian matrix for both ground and excited states.19,361

For example, it is clear from the form of eq 79 that a variationally
minimized energy, whether for a ground state or an excited
electronic state, must correspond to a positive-definite parti-
tioned orbital Hessian matrix.
There are several common approximations used in MCSCF

methods. The evaluation of the commutators in eqs 73�77
allows the elements to be written directly in terms of the current
Hamiltonian integrals and the current reduced density and
transition matrix elements.

Eref ¼ ÆmcjHjmcæ ¼ ∑
pq

hpqDpq þ ∑
pq
ðpqjrsÞdpqrs ð80Þ

f mcpq ¼ 2ðFpq � FqpÞ ð81Þ

Fpq ¼ ∑
t
hptDtq þ ∑

tuv
ðptjuvÞdqtuv ð82Þ

f mcj ¼ 2ÆjjHjmcæ
¼ ∑

pq
hpqD

j:mc
pq þ ∑

pqrs
ðpqjrsÞdj:mcpqrs

ð83Þ

Gmc
pq, rs ¼ ð1� PpqÞð1� PrsÞfðFps þ FspÞδqr � 2hpsDqr

þ ∑
uv

4ðpujrvÞdqusv þ 2ðprjuvÞdqsuvg ð84Þ

Gmc
pq, j ¼ 4ð1� PpqÞf∑

t
hptD

j:mc
qt þ ∑

tuv
ðptjuvÞdj:mcqtuvg ð85Þ

Gmc
j, k ¼ 2ÆjjH � Emcjkæ ð86Þ

(For notational brevity, the above expressions are written with
the index-permutation operators Ppq and Prs.) Most MCSCF
calculations partition the orbitals into three disjoint subsets: the
inactive orbitals which are doubly occupied in each CSF in the
reference expansion space, the active orbitals which have arbitrary
occupations (0, 1, or 2) in the various CSFs, and the virtual
orbitals which are unoccupied in each of the reference CSFs. The
inactive and active orbitals together form the occupied orbital
subset. Orbital rotations between pairs of inactive orbitals leave
each individual CSF unchanged, the corresponding gradient
element is always zero, and this set of orbital rotation variables
kij is trivially redundant. Similarly, rotations kab between two
virtual orbitals always leaves each CSF unchanged and are also
trivially redundant. In most MCSCF implementations, these

rotation variables are simply ignored (set to zero) during the
orbital optimization procedure. A particular active�active rota-
tion may or may not be redundant; some examples are discussed
below. The density matrix elements in the above general expres-
sions simplify with this type of orbital partitioning. If any density
matrix subscript indexes a virtual orbital, then that element is
zero; this places restrictions on the summation indices in the above
expressions to range over only the occupied orbitals. Furthermore, if
a subscript of a density matrix indexes an inactive orbital, then
that density matrix element may be simplified with the identities

Dit ¼ 2δit ð87Þ

dituv ¼ DitDuv � 1
4
DiuDtv � 1

4
DivDtu ð88Þ

with i inactive and t,u,v general. This effectively means that only
density matrix elements with active orbital indices need to be
computed explicitly. This partitioning of the orbitals results in
four different types of orbital gradient terms (with orbital indices
ip, ia, pq, and pa) and in the corresponding 10 different types of
orbital�orbital Hessian terms. Examination of the Eref, the CSF
gradient fj

mc, and the CSF Hessian Gjk
mc expressions show that

only the subset of integrals with all occupied orbital indices are
required for these elements. If there are o occupied orbitals and n
total orbitals, then this two-electron integral subset requires
about ((1/2)on

4 + (1/4)o
2n3 + (1/12)o

4n) effort to compute using
the normal four-step integral transformation algorithm com-
pared to about 4n5, (29/24)n

5, or (25/24)n
5 effort for the full

transformation, depending on the treatment of the orbital index
permutation symmetry.362 Only integrals with at most one
virtual index are required for the orbital gradient fpq

mc and the
orbital-CSF Hessian elements Gpq,j

mc ; these integrals require an
additional ((1/6)o

3n2 + (5/12)o
4n) effort. Finally, integrals with at

most two virtual indices are required for the orbital�orbital
Hessian elements Gpq,rs

mc ; these integrals require about (on4 +
(1/2)o

2n3 � (1/6)o
4n) effort, which is about a factor of 2 larger

than that required for the energy and gradient terms. This shows
that substantial effort can be eliminated by restricting the two-
electron integral transformation to compute only the required
subset at any time. There is a substantial history within the
computational chemistry community related to efficient compu-
tation of various subsets of the two-electron integrals, and it is
noted here only that similar orbital index subset restrictions apply
to many other electronic structure methods (e.g., the Bk approx-
imation and various second-order PT methods).
The orbital�orbital Hessian elements Gpq,rs

mc in eq 84 are seen
to consist of terms computed from the Fock matrix elements F,
which in turn require only the zero- and one-virtual integral
subsets, and only the terms in the last summation require the
two-virtual integral subset. As discussed above, the computation
of these latter integrals requires about twice the computational
effort of the smaller subset. If the orbital�orbital Hessian matrix
is approximated with only the terms involving the F matrix
elements, and if that approximation is sufficient to allow conver-
gence with less than twice the number of iterations of the full
second-order method, then the overall effort for the integral
transformation steps would be less than that for the full second-
order procedure. This approximation, alongwith the total neglect of
the orbital�CSF and CSF�CSF blocks of the Hessian matrices,
is used in the CASSCF implementation in MOLCAS.123

These approximations make it problematic to converge to
excited states—the orbital variations tend to cause variational
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collapse of the excited states, resulting in oscillatory convergence
and other difficulties. However, other levels of approximation,
which include these missing Hessian matrix blocks while still
using only the zero- and one-virtual integral subsets, could be
implemented for these kinds of excited-state calculations. Cha-
ban et al.363 demonstrated the convergence characteristics of
several MCSCF approaches using a diagonal Hessian approx-
imation. Other approximations used in MCSCF calculations
involve approximations to the molecular integrals. These have
been done with pseudospectral methods,304,306 RI methods,61

and the use of incomplete Cholesky factorizations.53�55

In many situations, the MCSCF energies and wave functions
themselves are only of secondary importance; the primary goal is
the computation of the orbitals which are then used in a
subsequent MRCI calculation. These orbitals are used to de-
scribe simultaneously several electronic states, sometimes with
the same spin values S, and sometimes with different S values (see
eq 10). However, the optimization of the MCSCF orbitals for a
particular state sometimes causes the subsequent MRCI calcula-
tion to be biased. For example, excitation energies from lower
states might be systematically underestimated while excitation
energies to higher states are overestimated, or other properties,
such as dipole moments or Ær2æ expectation values might be
biased by the orbital choice. To avoid this bias, it is typical to
optimize the MCSCF orbitals to minimize a weighted average of
the states of interest.364,214,219,365

E̅ ¼ ∑
Nav

k¼ 1
wkEk ð89Þ

The optimization of the orbitals is done through the minimiza-
tion.

∂E̅
∂λ

¼ 0 ¼ ∑
Nav

k¼ 1
wk

∂Ek
∂λ

ð90Þ

with Σk wk = 1. The individual states in the averaging procedure
are described with optimal CSF coefficients ck, with each vector k
satisfying the eigenvalue equation. It is only the variation of the
orbitals, which are shared by all of the states in the averaging
procedure, that is described with a single set of parameters k. This
state-average optimization also addresses the problematic con-
vergence of first-order convergent MCSCF optimizations for
excited states; if all lower states are included in the averaging
procedure, then variational collapse during the excited-state
orbital optimization process can be avoided.219,364,214 Unlike
the single-state optimization case, the individual gradients ∂Ek/
∂k are generally nonzero; it is only the weighted average that is
zero at convergence of the optimization procedure. If the
individually optimized orbitals for the individual states are
similar, then the individual gradients from the state-averaged
procedure are small, but if there is strong competition among the
states for the orbitals to have very different character, then the
individual gradients from the state-averaged procedure are large.
If the individual gradients are too large, then the state-averaging
procedure is inappropriate. In this case, additional CSFs should
be added to the expansion space, or the active orbital space
should be increased, in order for the wave function to have
sufficient flexibility. This situation can be detected by monitoring
the individual gradients during the optimization procedure and
for the final converged orbitals.

2.2.3. MCSCF Wave Function Expansions. One of the
important differences between MCSCF and MRCI methods is
the choice of expansion space. MCSCF expansion spaces are
discussed in detail in ref 19, and only some of the important
features are mentioned here. The MCSCF expansion space is
chosen typically to describe the important valence correlation
effects. In a PES calculation, for example, the relevant bond-
breaking and spin-recoupling effects should be described well by
the MCSCF expansion. In a FORS/CAS expansion,219,364,366 for
example, the important valence orbitals and electrons would be
identified and included in the active orbital list, and then all
possible CSFs (i.e., all possible occupations and spin couplings)
with those active orbitals and electrons would be included in the
MCSCF expansion. There are several important features of this
expansion form. One is that all active�active orbital rotations are
redundant, whichmeans that all orbital parameters of the type kpq
for active orbital indices p and q can be ignored during the
optimization. This means that one block of the orbital gradient
vector and four blocks of the orbital�orbital Hessian matrix can
be ignored, which simplifies the implementation considerably.
Another desirable feature is that such expansions are size-
consistent. Separate calculations on molecular fragments A
and B are consistent with the calculation on the combined
molecule AB with noninteracting fragments provided the AB
active orbital space is the union of the A and B active orbital
spaces; in such cases, the wave functions satisfy the multi-
plication property |ψABæ = |ψAXψBæ, and the energies satisfy
the sum property EAB = EA + EB. Furthermore, if the active
spaces are chosen appropriately, these relations hold even, for
example, for closed-shell molecules that dissociate to open-
shell fragments and also for other types of spin-recoupling
processes.
For larger molecules, not all valence orbitals and electrons can

be included in FORS/CAS expansions due to the large expansion
dimensions, and a selection process is required. Ignoring any
simplifications due to point group symmetry, the number of
expansion terms for such an expansion is given by1

N full �CI
det ¼

�
n
Nα

��
n
Nβ

�
ð91Þ

N full �CI
csf ¼ 2S þ 1

n þ 1

� n þ 1
1
2
N � S

�� n þ 1
1
2
N þ S þ 1

�
ð92Þ

for expansions in terms of Slater determinants and CSFs,
respectively. In these expressions, N and n refer only to the
active electrons and orbitals, respectively, not to those for the full
molecule. It is convenient to denote such an expansion space as
(nN), in analogy to the familiar atomic shell notation, meaningN
electrons distributed in n orbitals. Another common notation for
such an expansion is CAS(N,n); the more compact notation will
be used in this discussion. Practically speaking, such FORS/CAS
expansions are limited to aboutN≈ 16 electrons and n≈ 16, for
which Ndet(16

16) = 1.66 � 108 and Ncsf(16
16) = 3.48 � 107 for

M = 0 and S = 0, respectively, according to eqs 10 and 11.
Although even larger MCSCF calculations are possible, it is then
extremely difficult to do any kind of subsequent MRCI calcula-
tion based on these larger reference expansion spaces. Conse-
quently, additional orbital occupation restrictions are typically
imposed in order to reduce the expansion length. Two of the
more commonly encountered types of occupation restrictions
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will be discussed here. A wide range of other restricted expansion
spaces are discussed in ref 19.
One type of occupation restriction that is imposed onMCSCF

expansions is termed a direct-product expansion.19 With this
approach, the active orbital space is divided into an arbitrary
number of disjoint subsets, and each of these orbital subspaces is
associated with a fixed number of electrons. Within each sub-
space, all possible orbital occupations are allowed, and the final
expansion space is then the direct product of all combinations of
all these occupations. In the occupation restricted multiple active
space (ORMAS) approach of Ivanic367,368 this is termed an
ORMAS0 expansion. There are two important features of direct-
product expansions. The first is that the energies are rigorously
size-consistent provided the orbital subsets of the fragments are
taken also as the orbital subsets of the molecule. This follows
from the product nature of the expansion space. The second
important feature is that the orbital rotations within each orbital
subset are redundant. The orbitals within a subset form an
invariant subspace. This means practically that these rotations
should be ignored in setting up the orbital-rotation vector k, and
it also means that any arbitrary choice of orbital rotations within
each of the product spaces may be chosen for the final optimized
orbitals. This last step is called orbital resolution, and it may be
imposed to facilitate analysis of the wave function or to simplify
some aspect of a subsequent MRCI calculation. Orbital resolu-
tions based on spatial localization (both with and without
orthogonalization constraints), natural orbitals, or canonical
orbitals based on the diagonalization of Fock matrices are
common. In all of these situations, a particular orbital rotation
can be classified as either essential (it is required in order to
minimize the energy) or redundant (it has no effect on the
wave function or energy, provided the CSF coefficients are
allowed to adjust accordingly). This essential/redundant
structure of the orbital rotation parameters is discussed in
more detail in ref 21.
For an example of a direct-product expansion, suppose that 16

active orbitals are divided into eight pairs and two electrons are
associated with each orbital pair. Each individual pair would then
have three possible occupations: j1

2, j1j2, and j2
2 which can

be denoted by the full-CI designation 22. The direct product of
the eight subspaces, denoted 2222222222222222 would then
consist of 38 = 6561 possible orbital occupations. Each of the
open-shell occupations in a direct-product expansion can have
multiple spin couplings, and in this particular example the 6561
orbital occupations result in 71 398 singlet CSFs, which is several
orders of magnitude smaller than the 1616 expansion discussed
above for this same active orbital space. Note that although
there are severe occupation restrictions imposed on this expan-
sion space, the overall excitation level relative to a single
configuration is not artificially limited; in this particular exam-
ple, there are 16-fold excitations in the expansion space, the
same as for the 1616 full-CI expansion. This particular type of
direct-product expansion, in which pairs of electrons are constrained
to occupy pairs of orbitals, is called the GVB-RCI expansion, and
a general expression for the CSF expansion dimension for
singlets is

NGVB �RCI
csf ¼ ∑

n=2

k¼ 0

2n=2 � k

k þ 1

2k
k

 !
n=2
k

 !
ð93Þ

The expansion dimension in terms of determinants is the same
as eq 93 except that the (k + 1) factor in the denominator is

dropped.19 The GVB-RCI expansion is appealing because the
optimal orbitals tend to localize into chemically intuitive
bonding and antibonding pairs. Given an arbitrary molecule,
it is usually straightforward to construct the GVB-RCI expan-
sion along with a reasonable set of initial orbitals from the
Lewis dot structure for the molecule, and this expansion is
capable of breaking single and multiple bonds and dissociating
correctly in many situations to the correct high-spin or low-
spin molecular fragments. Due to the direct-product construc-
tion of the expansion space, the resulting wave functions and
energies are rigorously size-consistent. Another useful feature
of GVB-RCI expansions, and direct-product expansions in
general, is that the two-particle density matrix is relatively
sparse; the nonzero elements dpqrs have orbital indices in
which either all correspond to a single invariant subspace or
two indices belong to one subspace and the other two indices
belong to another subspace. In the GVB-RCI case, there are
only about (19/2)n

2 unique nonzero elements compared to
about (1/8)n

4 for the general full-CI expansion. Because of
these features, the GVB-RCI expansion often results in an
excellent reference expansion space for subsequent MRCI
calculations. However, excited states and sometimes even
ground states are not described adequately by the GVB-RCI
expansion. Three representative examples of failures are the
benzene molecule for which the GVB-RCI expansion computes
a symmetry-broken wave function with localized double bonds
rather than the delocalized aromatic structure, the CO2 molecule
for which a symmetry-broken D2d wave function is computed
rather than the correct D∞h wave function, and the O3 molecule
for which important interpair correlations between the lone-pair
π orbital and the two open-shell π orbitals are poorly described.
In all of these cases, a generalization of the occupations within the
direct-product expansion form solves these issues but at the
expense of larger expansion spaces. In the benzene case the three
π orbital products 222222 can be replaced with the larger 66

expansion, in the CO2 case the 1πx
2(2πx3πx)

2(1πy2πy)
23πy

2

direct product can be replaced with the (1πx2πx3πx)
4-

(1πy2πy3πy)
4 direct product, and in the O3 case the 1π

2(2π3π)2

product can be replaced with the (1π2π3π)4 subspace. For a
more complete discussion of these issues with application to
several molecules, see ref 369.
Another type of occupation restriction is the restricted active

space (RAS).370 In this approach, the active orbitals are divided into
subsets, labeled I, II, and III. Aminimum total occupation is imposed
on subspace I, a maximum occupation is imposed on subspace III,
and subspace II is allowed any occupation consistent with the total
number of electrons. In general, this expansion space is equivalent to
the union of several direct-product expansion spaces, each with the
same orbital subset partitioning but with different numbers of
subspace electrons. If nX corresponds to the orbitals in each of
the three subsets, X = {I,II,III} and if NX

min and NX
max are the

correspondingminimum andmaximumoccupations forX = {I,III},
then the RAS expansion space may be written symbolically as

fRASg ¼ ∪
Nmax
I

j¼Nmin
I

∪
Nmax
III

l¼Nmin
III

njIn
k
IIn

l
III; j þ k þ l ¼ N and k g 0

ð94Þ
The orbital subspace invariance properties for the RAS expansion
follow from those of the component direct-product expansions.
Specifically, each subspace X = {I,II,III} is invariant because it is
invariant in each of the individual direct-product expansions in
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eq 94. For example, for the N = n = 16 expansion used in the
previous discussions, suppose the first four orbitals, subspace I,
are required to have at least four electrons (and no more than
eight), the last four orbitals, subspace III, are allowed to have no
more than four electrons, and the second group of eight orbitals,
subspace II, is occupied by the complement of electrons so that
the total in each CSF is 16. The RAS expansion then consists of
the union of 25 direct-product expansions of the form 4j8k4l for
the five values of j = 4...8, the five values of l = 0...4, and with k =
16 � j � l. This expansion consists of 16 462 550 CSFs or
79 342 342 determinants, about half of that for the 1616 expan-
sion. For this RAS expansion, the six orbital rotations within
subspace I are redundant, the 28 rotations within subspace II are
redundant, and the six rotations within subspace III are redun-
dant. All other orbital rotations are essential. The ORMAS
expansion implemented by Ivanic367 may be regarded as a
generalization of the RAS expansion approach to allow an
arbitrary number of orbital subsets, with each subset asso-
ciated with its own minimum and maximum occupation. This
approach is also termed the generalized active space (GAS)
expansion.56,635 The ORMAS/GAS expansion is also a union of
multiple direct-product expansions, and therefore the orbital
rotations within each orbital subspace are redundant. One of the
practical features of RAS expansions is that the coupling coeffi-
cients can be generated as products of factors that are computed
separately for the three orbital subspaces.370 Unlike the sparse
nature of the two-particle density matrix for direct-product
expansions, the RAS/ORMAS/GAS expansion form generally
results in a dense 2-RDM.
Size-consistency can be achieved with the RAS/ORMAS/GAS

expansion approach in certain special situations, but in general
this expansion form is not size-consistent. To demonstrate this,
consider a simple example with RAS expansions for fragments A
and B compared to the combined RAS-AB expansion for the
molecule. Suppose fragment A has four electrons and has
subspaces IA, with two orbitals {j1Aj2A} occupied by at least
two electrons, and IIIA, with two orbitals {j3Aj4A} occupied by
no more than two electrons. This RAS expansion is equivalent to
an SRCI-SD expansion from the configuration |j2

1Aj
2
2Aæ.

Similarly, let fragment B with four electrons have subspaces IB,
with two orbitals {j1Bj2B} occupied by at least two electrons,
and IIIB, with two orbitals {j3Bj4B} occupied by no more than
two electrons. To include all possible product configurations
in the RAS-AB expansion, the IAB subspace must consist of
four orbitals {j1Aj2Aj1Bj2B} occupied by at least four
electrons, and the IIIAB subspace must consist of four orbitals
{j3Aj4Aj3Bj4B} occupied by nomore than four electrons. This
corresponds to the SRCI-SDTQ expansion from the configura-
tion |j2

1Aj
2
2Aj

2
1Bj

2
2Bæ. The inconsistency arises by noting

that a configuration such as |j2
1Aj

2
2Aj

2
3Bj

2
4Bæ, which corre-

sponds to a quadruple excitation on fragment B, is included in
this RAS-AB expansion space, but it does not appear in the
product of the fragment RAS expansions. Thus this RAS-AB
expansion space is more flexible than it should be, the AB wave
function does not satisfy the product requirement, and EAB <
EA + EB. On the other hand, if the IAB subspace is required to have
at least six electrons, and the IIIAB subspace is restricted to have no
more than two electrons, then there would be configurations in
the product expansion that would not be included in this RAS-AB
expansion, this expansion space would be insufficiently flexible,
and EAB > EA + EB. This is an example of the usual size-con-
sistency problem for SRCI-SD expansions. There is no choice of

occupation limits for the IAB and IIIAB orbital subspaces that
would result in exact size-consistency. The lack of size-consistency
for RAS/ORMAS/GAS expansions has been discussed and demon-
strated by Ivanic for the 2NO2 f N2O4 reaction.

368

2.2.4. Computing the Matrix Exponential. Given the
skew-symmetric matrix K from an iteration of the MCSCF
procedure, it is necessary to compute the orthogonal matrix
U = exp(K). There are several approaches to compute the matrix
exponential.371,372 Errors may be tolerated in some situations in
the computation of U provided they are sufficiently small (e.g.,
jO(|K|3) for a second-order convergent wave function optimi-
zation procedure), but it is essential that the final U be ortho-
gonal to within a small factor of the machine precision. In other
situations, the elements of U must be accurate to within some
tolerance regardless of the size of the matrix elements K. There-
fore the goal is an efficient procedure that satisfies both kinds of
accuracy criteria. One obvious approach to compute U is to
truncate the Taylor expansion in eq 63 at some valuem. This may
be done recursively with the sequence,

Uð0Þ ¼ 1; Xð1Þ ¼ K

UðjÞ ¼ Uðj � 1Þ þ XðjÞ

Xðj þ 1Þ ¼ 1
ðj þ 1ÞKX

ðjÞ

)
j ¼ 1 ... m

ð95Þ

Either eq 95 may be implemented with a predetermined trunca-
tion orderm ormmay be determined dynamically by monitoring
||X(j)||. This is a relatively expensive algorithm since each step
requires about 2n3 arithmetic operations for the matrix product,
ignoring any sparsity in the matrix K. With termination after m
steps, the matrix U = U(m) is not strictly orthogonal due to the
truncation error, so a subsequent orthonormalization step re-
quires an additional 2n3 operation.
The identity exp(K) = (exp(K/k))k may be used to compute

the matrix exponential with the scaling and squaring method.373

The matrix Z is initialized as Z = K/2p for some suitably large
value of p for which exp(Z) may be computed accurately with a
small value of m in eq 95. U is then computed with p recursive
squaring steps. For a specified error tolerance, this approach is
usually cheaper than the straightforward truncated Taylor ex-
pansion. Either the truncated exp(Z) must be orthogonalized or
the resulting matrixUmust be orthogonalized afterward because
the truncation error accumulates with each recursive squaring
step.374

A closely related approach is based on the rational function
approximation

Uðk=mÞ ¼ qkmðKÞ�1pkmðKÞ ð96Þ
Here pkm(K) and qkm(K) are (commuting) polynomials of
degree k and m, respectively. In addition to the recursive effort
for the matrix powers for the two polynomials, the linear
equation solutions in eq 96 for U(k/m) requires about the same
effort as two matrix multiplications. If the expansion coefficients
in the two polynomials are chosen to reproduce the first k + m
Taylor expansion coefficients of the exponential, this is a Pad�e
approximant and the polynomial coefficients have known closed-
form expressions.373 A simple example is U(1/1) = (1 �
(1/2)K)�1(1 + (1/2)K) which is correct through second order.
Although U(1/1) is also only an approximation and suffers from
truncation error, it is orthogonal in exact arithmetic. Thus no
subsequent orthogonalization step is required unless the
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condition number of the matrix (1 � (1/2)K) is exceedingly
large. The condition number of a matrix is the ratio of the largest
and smallest singular values, and large values can result in large
numerical errors in linear and eigenvector equations when using
finite-precision floating point arithmetic. Other more general
pmm(K) and qmm(K) diagonal polynomials may also be chosen to
satisfy this orthogonal relation. This rational function approx-
imation can be combined with recursive squaring.373 For a
given error tolerance, lower order k and m may be used, and
this can result in overall less effort. This initial scaling also
reduces the impact of error growth due to the condition
number of the qkm(K) matrix. In those situations for which
U(k/m) in the initial squaring step is orthogonal, the final
computed matrix is also orthogonal. Otherwise, an explicit
orthogonalization either before or after the recursive squaring
may be necessary.
The matrix K is normal (it commutes with its transpose), so it

may be diagonalized by a complex unitary matrix V. It has purely
imaginary eigenvalues, the nonzero elements of which occur in
complex conjugate pairs.

KV ¼ Viλ ð97Þ
This allows the matrix exponential to be computed as

U ¼ expðKÞ ¼ V expðiλÞV† ¼ VðcosðλÞ þ i sinðλÞÞV†

ð98Þ
The result should be purely real, but in finite precision arithmetic
there is always some small imaginary error that must be
discarded. Furthermore, the complex diagonalization costs about
four times that of a comparable real symmetric diagonalization.
In a diagonalization-based approach, the full eigenpair spectrum
is required, so direct methods which require O(n3) effort are
typically employed.
The negative semidefinite symmetric matrix K2 may be

diagonalized with a real orthogonal matrix X

K2X ¼ Xλ ð99Þ
Using the purely real diagonal matrix d = Sqrt(�λ), the matrix
exponential can be computed358,375 as

U ¼ expðKÞ ¼ X cosðdÞXT þ KXd�1 sinðdÞXT ð100Þ
Zero diagonal elements are treated with limxf0 sin(x)/x = 1.
This expression has the advantage that the entire operation
involves only real arithmetic, and although it has no truncation
error, it suffers from numerical error due to the larger condition
number of the matrix K2 relative to that of the matrix K.
Consequently a subsequent orthonormalization step is some-
times required. In addition to the effort for the real symmetric
diagonalization, effort for three matrix products is also required.
The final approach relies on the fact that the matrix K may be

factored in the form

K ¼ WDWT ð101Þ
with real orthogonal W and a skew-symmetric block diagonal
matrix D. The diagonal subblocks are either 2� 2 or 1� 1 with
all diagonal elements zero. The factorization in eq 101 is
described in TOMS Algorithm 530 by Ward and Gray,376 and
the corresponding software is available from netlib.377 The
matrix exponential may then be computed as exp(K) = Wexp-
(D)WT, where the 2� 2 subblocks of the exponential matrix are

given as

exp
0 �θ

θ 0

 !
¼ cosðθÞ �sinðθÞ

sinðθÞ cosðθÞ

 !
ð102Þ

The entire procedure consists of sequences of products of ortho-
gonal transformations, so there is no growth of roundoff errors.
This is generally the recommended approach for computing the
accuratematrix exponential for the orbital transformation. It requires
only real arithmetic, it only requires effort comparable to a single real
symmetric matrix diagonalization plus a single matrix product, the
algorithm has no truncation error, and the resulting matrix U is
orthogonal to within a small factor of the machine precision.

2.3. New Multireference Approaches
Several new methods that strive to address the shortcomings

of MRCI have been developed recently. Two such methods are
the canonical transformation (CT) theory developed by Yanai
and Chan378,379 and the anti-Hermitian contracted Schr€odinger
equation (ACSE) developed by Mazziotti.380�383

2.3.1. Density-Based Approach to Dynamical Correla-
tion. Although other density-based methods related to the ACSE
have been developed,384�388 the treatment of dynamic correla-
tion within the context of the ACSE is discussed here. Consider
the density-matrix formulation of the Schr€odinger equation

ĤND ¼ END ð103Þ
where Ĥ is the Hamiltonian, ND = ΨΨ* is the N-electron
density, and E is the energy. Contraction of eq 103 onto the space
of two particles yields the contracted Schr€odinger equation
(CSE), which in second-quantized notation takes the form

ÆΨj2Γ̂i;j
k;l ĤjΨæ ¼ E2Di;j

k,l ð104Þ
In eq 104, 2Γ̂ is the two-electron reduced density operator
(RDO), and the elements of the two-particle reduced density
matrix (2-RDM)

2Di;j
k,l ¼

1
2
ÆΨj2Γ̂i;j

k;l jΨæ ¼ 1
2
ÆΨjâ†i â†j âlâkjΨæ ð105Þ

are defined here such that the trace of the 2-RDM isN(N� 1)/2.
Because the Hamiltonian contains at most two-electron interac-
tions, it can be verified that the left-hand side of the CSE in
eq 104 depends not only on the 2-RDM but also on the 3- and
4-RDMs. As a result, until recently work in the CSE community
has focused on developing accurate approximations to the 3- and
4-RDMs in terms of the 1- and 2-RDMs.
An alternative approach is obtained when the CSE in eq 104

is expressed as a sum of its Hermitian and anti-Hermitian
components

ÆΨj½2Γ̂i;j
k;l , ðĤ � EÞ�þjΨæ þ ÆΨj½2Γ̂i;j

k;l , Ĥ�jΨæ ¼ 0 ð106Þ
in which [...] and [...]+ denote the commutator and anticommu-
tator, respectively. For the CSE to be satisfied, both terms in
eq 106must equal zero separately, defining the ACSE380�382,389�395

(also called the k-particle Brillouin conditions)

ÆΨj½2Γ̂i;j
k;l , Ĥ�jΨæ ¼ 0 ð107Þ

In contrast to the CSE, the ACSE only depends on the 1-, 2-, and
3-RDMs since the commutator of two tensors with rankm and n,
respectively, is a tensor of rank (m + n � 1).
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2.3.2. Solution of the ACSE Equations. To solve the
ACSE for the 2-RDO and hence the energy, Mazziotti380�382

considers a sequence of unitary two-body transformations
applied to a reference wave function Ψ(λ), where the unitary
transformations are ordered according to a continuous time-like
variable λ

jΨðλ þ EÞæ ¼ eEŜðλÞjΨðλÞæ ð108Þ
where the operator

ŜðλÞ ¼ ∑
i, j, k, l

2Si;jk,lðλÞ 3 2Γ̂i;j
k;l ð109Þ

is restricted to be antihermitian (Ŝ† =�Ŝ) in order to ensure the
unitarity of the sequence of transformations. Inserting eq 108
into the definition of the ACSE in eq 107 and expanding the
exponentials up to first order in ɛ yields

Eðλ þ EÞ ¼ EðλÞ þ EÆΨðλÞj½Ĥ, ŜðλÞ�jΨðλÞæ þ ...

ð110Þ
Taking the ɛ f0 limit yields the following differential equation
for the energy

dE
dλ

¼ ÆΨðλÞj½Ĥ, ŜðλÞ�jΨðλÞæ ð111Þ

and a similar equation for the evolution of the 2-RDM is obtained
when the Hamiltonian in the ACSE is replaced with the 2-RDO

d2Di;j
k,l

dλ
¼ ÆΨðλÞj½2Γ̂i;j

k;l , ŜðλÞ�jΨðλÞæ ð112Þ

Inserting the definition of Ŝ(λ) in eq 109 into eq 110 and
differentiating, the elements of 2S are chosen in order to mini-
mize the energy along the gradient

2Si;jk,lðλÞ ¼ � 1
E
∂Eðλ þ EÞ
∂ð2Si;jk,lðλÞÞ

�����
2S¼ 0

¼ ÆΨðλÞj½2Γ̂i;j
k;l , Ĥ�jΨðλÞæ

ð113Þ
Although the differential eqs 111�113 formally employ the wave
function, they can be expressed in terms of the 1-, 2-, and
3-RDMs (because they all involve the commutator of two
rank-2 tensors). Provided there is a suitable initial guess for the
density matrices at λ = 0, the differential equations are
propagated until either (i) the energy or (ii) the least-squares
error of the ACSE increases. Technically, the ACSE (the right-
hand side of eq 113) should vanish upon convergence;
however, due to the approximations related to the reconstruc-
tion of the 3-RDM (see below), the ACSE equations are
evolved until either the energy or the least-squares error norm
of the ACSE increases.
Note that eqs 111�113, in addition to the 2-RDM, also

depend on the 3-RDM. As such, the ACSE equations are
indeterminate. To remove this indeterminacy, the 3-RDM is
approximated with its cumulant expansion

3Di;j;k
l,m,n ¼ 1Di

l ∧ 1Dj
m ∧ 1Dk

n

þ 3ð2Di;j
l,m � 1Di

l ∧ 1Dj
mÞ ∧ 1Dk

n þ 3Δi;j;k
l;m;n ð114Þ

where ∧ denotes the antisymmetrized tensor product, and the
cumulant (connected) part of the 3-RDM (3Δ) vanishes if all

three electrons are statistically independent. There are several
approximations to the connected part of the 3-RDM. The
simplest approximation, also known as the Valdemoro recon-
struction,396 is to simply neglect the three-electron cumulant
(3Δ = 0). As argued in ref 383, this simple approximation yields
energies with sufficient accuracy. More elaborate reconstruction
functionals, such as the Nakatsuji�Yasuda397 and the Mazziotti
functional,398,399 can lead to numerical difficulties when solving
the ACSE since the elements of the connected 3-RDM can
become large when all six orbitals are in the active space.383

Because of these considerations, the ACSE neglects 3Δ when
treating multireference problems.383

In applications to multireference problems, the initial guess
for the ACSE is generated from a CASSCF wave function. For
this reason, these methods may be considered multireference
methods. This limits the applicability of the ACSE to applica-
tions with small active spaces, but in principle this could be
circumvented by using one of the new methods (e.g., GCF,
DMRG, or the active-space variational RDM400�404 method)
to compute the initial density. Nonetheless, the working
assumptions in applying the ACSE to multireference pro-
blems are that (i) the reference (CASSCF) 2-RDM captures
the effects of static correlations, (ii) that unitary transforma-
tions among the active orbitals can be neglected, and (iii) the
two-body operator Ŝ(λ) neglects the terms with more than
two virtual orbitals. These assumptions correspond to those of
other multireference methods. Some recent applications of
ACSE include geometry optimizations,405,406 reaction barriers,407,408

sigmatropic shifts,409 excited states,410 open-shell systems,411 and
conical intersections.412

2.3.3. Canonical Transformation Theory. To incorporate
the effects of dynamic correlation on top of a multiconfigura-
tional reference wave function |ψ0æ, the canonical transformation
theory of Yanai and Chan378,379 expresses the wave function
based on the unitary exponential ansatz

jΨCTæ ¼ eÂjψ0æ ð115Þ
When the antisymmetric excitation operator Â contains at most
single- and double-replacement operators

Â ¼ ∑
i1, s1

As1
i1
ðâ†s1 âi1 � â†i1 âs1Þ

þ ∑
i1, i1, s1, s2

As1, s2
i1, i2 ðâ†s1 â†s2 âi2 âi1 � â†i1 â

†
i2 âs2 âs1Þ ð116Þ

that only rotate between the active�external and external�
external spaces,378 the method is denoted CTSD. The orbital
indices i and s in eq 116 denote arbitrary orbitals within the
active and external spaces. As long as the reference wave
function is size-consistent, the exponential parametriza-
tion of the wave function guarantees that CT is rigorously
size-consistent.378 Application of the unitary operator to the
Hamiltonian

Ĥ ¼ e�ÂĤeÂ ¼ Ĥ þ ½Ĥ, Â� þ 1
2
½½Ĥ, Â�, Â� þ ...

ð117Þ
generates the effective CT Hamiltonian Ĥ . The excitation
operator amplitudes (Ai1

s1 and Ai1,i2
s1, s2) in eq 116 are determined

by solving the generalized Brillouin conditions.390 The energy is then
computed as the expectation value of this effective Hamiltonian with
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the reference wave function,

E ¼ Æψ0jĤ jψ0æ ð118Þ
In the current form, the computation in eq 118 is just as

challenging as the original Schr€odinger equation since, as can be
seen from the commutator expansion in eq 117, the CT
Hamiltonian contains, in addition to one- and two-electron
operators, also three-electron and higher rank operators. How-
ever, as noted by Yanai and Chan,378 this complexity may be
eliminated by decomposing the three-body operators after each
commutator as in linearized CTSD (LCTSD)

Ĥ ¼ e�ÂĤeÂ ¼ Ĥ þ ½Ĥ, Â�1, 2 þ 1
2
½½Ĥ, Â�1, 2, Â�1, 2 þ ...

ð119Þ
When employing the generalized normal ordering of Mukherjee
and Kutzelnigg,413,414 the terms [Ĥ,Â]1,2 only depend on one-
and two-body operators and the 1-, 2-, and 3-RDMs of the
reference wave function.379 Unlike the energy defined in eq 118,
this approximation results in an energy that is no longer bounded
from below by the exact full-CI energy. As in the density-based
approaches, the dependence on the 3-RDM may be eliminated
via the cumulant theory, and the resulting approximate CT
Hamiltonian only depends on one- and two-electron terms. In
principle, the expansion still requires an infinite number of terms
to be computed; however, 8�10 terms are sufficient415 for a
precision of 10�9 Eh.
As discussed in more detail in ref 379, the performance of

single-reference LCTSD is expected to “perform intermediate
between linearized CCSD and the full CCSD theories” at a
computational scaling that is similar to SR-CCSD (n6, where n is
the number of orbitals). Note, however, that LCTSD yields
potential energy surfaces that are similar in accuracy to those
from other multireference approaches. The accuracy of CTSD
may be improved, while retaining the computational cost of
CCSD, by delaying the operator decompositions for as
long as possible.416 The resulting quadratic CTSD (QCTSD)
Hamiltonian

Ĥ ¼ e�ÂĤeÂ ¼ Ĥ þ ½Ĥ, Â�1, 2 þ 1
2!
½½Ĥ, Â�, Â�1, 2

þ 1
3!
½½½Ĥ, Â�, Â�1, 2, Â�1, 2 þ 1

4!
½½½½Ĥ, Â�, Â�1, 2, Â�, Â�1, 2 þ ...

ð120Þ
is more complex as it requires the decomposition of four-body
operators ([[Ĥ,Â],Â]1,2 versus [Ĥ,Â]1,2 in LCTSD). Nonetheless,
the overall scaling of QCTSD with system size is the same as that
of LCTSD, and QCTSD is accurate to the same order in
perturbation theory as CCSD.416

Although the initial applications378,379,416 have focused on
assessing the accuracy of LCTSD and QCTSD relative to
multireference approaches such as CASPT2, MR-CISD, MR-
ACPF, and MR-AQCC, more recent work toward developing
strongly contracted CTSD for eliminating intruder states,417 in
conjunction with a reference wave function from DMRG,418

shows great promise. Since the computational cost of CTSD
does not depend on the number of determinants in the reference
wave function, the DMRG-CT method has been applied to
a variety of problems that are out of the reach of standard
multireference approaches: (i) the evaluation of total correlation
energies for conjugated polyenes (2424 active space),417 (ii) the

isomerization of [Cu2O2]
2+ (3228 active space),417 and (iii)

singlet�triplet gap of free base porphirin (2426 active space).415

2.4. Basis Extrapolation and R12 Methods
The quality and flexibility of the orbital basis set affects the

quality of the computed wave functions and molecular proper-
ties. Thus any inherent limitations in a particular orbital basis set
are reflected in the quality of the computed properties. There are
two common approaches to address orbital basis set limita-
tions: methods that are based on extrapolations and methods
that include explicit interelectronic interactions into the wave
function.

One of the important features of modern, generally con-
tracted, basis sets (e.g., the ANO467,468 and the correlation-
consistent466 basis sets) is that they display systematic conver-
gence of the energy and other molecular properties. These
sequences of basis sets are often used to extrapolate a given
property to the complete basis set (CBS) limit for a given
method. These CBS limits may be used to obtain high-quality
results, to measure the inherent error in a given electronic
structure method, and also to assess the quality of the individual
calculations that are used in the extrapolation procedure.

The basis set extrapolation can be justified by the observation
that the correlation energy converges with the inverse third
power of the angular momentum in the helium atom419 and in
other N-electron atoms.420 On the other hand, it is also known
that the uncorrelated energy (SCF) shows an exponential con-
vergence pattern;421,422 i.e., it converges much faster. Extrapolation
schemes developed for SR theories use these facts and extra-
polate the SCF and correlated energies separately.423�425,436 For
the SCF energy an exponential equation

EðXÞ ¼ EðCBSÞ þ A expð � BXÞ ð121Þ
may be used, where X is the cardinal index (e.g., X = 2 for DZ,
X = 3 for TZ, and so on). This requires energy values with three
different basis sets to determine the three parameters. For the
correlation energy an inverse cubic formula requiring two energy
values can be used423

EðXÞ ¼ EðCBSÞ þ AX�3 ð122Þ
Other formulas are also used, e.g., the mixed Gaussian expression
by Peterson et al.426

EðXÞ ¼ EðCBSÞ þ A expð � ðX � 1ÞÞ
þ B expð � ðn� 1Þ2Þ ð123Þ

In the preceding expressions E(CBS), A, B, and n are the
adjustable parameters that are fitted to the E(X) data points.

The apparent problem in MR calculations is that uncorrelated
and correlated energy components cannot easily be distin-
guished. First, MR calculations are often used in situations when
the one-determinant approximation fails; i.e., separating the
uncorrelated part is not possible. However, a separation of the
static (nondynamic) and the dynamic parts of the correlation
might be attempted. It is expected that the static part will
converge similarly to the SCF case, and the remaining part can
be extrapolated with a “dynamic electron correlation” expression.
In the case of excited states, even this distinction is problematic
since the “uncorrelated” excited state is often not defined. The
fundamental idea of separation of static and dynamic correlation
is therefore nontrivial. A practical separation can be defined as the
difference between the total and the reference energy. In case of a
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large CAS reference, however, particularly one that includes
extra-valence orbitals in the active space, the reference energy
would include already some portion of the dynamic correlation
energy, and the convergence with respect to the basis set size
might not be described well by the exponential formula. There-
fore there is no unique and unambiguous basis set extrapolation
recipe for MR calculations.

Several suggestions can be found in the literature to address
this problem. Petersson et al.427 observed that the convergence
pattern of the CAS energy is very similar to that of the UHF
energy, and they employ the UHF CBS limit to get the extra-
polated CAS energy. The advantage of this procedure is that the
larger basis set calculations are only performed at the UHF level
resulting in some saving in computer time. In a subsequent
paper428 a similar procedure was used to extrapolate the MR-
CISD energy; here the UHF-CCSD energy calculated with larger
basis sets are used to extrapolate the MR-CISD correlation
energy. Unfortunately if UHF fails to describe the system (e.g.,
due to strong static correlation, or spin contamination, or for
excited-state wave functions), this approach is inappropriate.
Nevertheless, the procedure was successfully used to describe
several states of N2.

428 Jiang and Wilson429 tested several
combinations of extrapolation formulas, including exponential
type extrapolations of the CAS energy and subsequent extra-
polations (again using different formulas) for the dynamic
correlation. They also considered the possibility of extrapolating
the total energy according to the eq 123 above. Earlier M€uller
et al.655 successfully used the inverse cubic formula eq 122 to
extrapolate the total MR-CISD and MR-AQCC energy in a
systematic study of the excited states of diatomic molecules.
Extrapolation of the total energy was also performed successfully
in several studies of the ozone molecule661�663 and to obtain a
high-quality potential energy surface for the F + H2 reaction.

105

In a study on the vibrational states of LiH molecule, Holka
et al.650 defined the uncorrelated energy corresponding to 22

CAS and calculated it with large basis sets, essentially obtaining
the basis set limit. The correlation energy was defined as the total
MR-CISD energy (using a large CAS reference wave function)
less the 22 CAS uncorrelated energy, and this difference was
extrapolated with the cubic formula. Very accurate results could
be obtained this way (1�2 cm�1 accuracy for vibrational levels
up to dissociation), but large basis sets (up to 6Z) were required.
The drawback of this method is that it is difficult to generalize to
other systems in which the “static” correlation is not as well-
defined as in the case of a single-bond breaking.

For a given orbital basis, a sequence of progressively more
accurate electronic structure methods can be used to extrapolate
to the full-CI limit. With CI methods, such sequences typically
rely on orbital basis truncations that are based on natural orbital
occupations, on overall excitation level (CISD, CISDT, and
CISDTQ, etc.), or on numerical selection methods. These two
different extrapolations, orbital basis and method, can be used
together to estimate the combined CBS and full-CI limit. This is
the complete-CI limit which, after accounting for relativistic and
nonadiabatic effects, may be compared to experimental values.
The Gaussian Gx methods,430 the focal-point method,431 the
CEEIS method,195,196 the Wx methods,432 and the HEAT
methods433,434 are popular examples of this combined extra-
polation approach, although these, except CEEIS, involve
typically single-reference CC and PT calculations. Recently
a new multireference extrapolation procedure has also been
introduced by Jiang and Wilson429 under the name MR-ccCA

(multireference analog of the correlation consistent compo-
site approach).

Three difficulties can arise with these extrapolations. The first
occurs with the CBS limit for a given electronic structure method.
If the wave function expansion or the energy expression is
insufficiently flexible to describe the property, then erratic or
unreliable results can be computed for the basis set sequence.
Typically this occurs when there are two or more qualitatively
different components of the property, and the different compo-
nents converge at different rates with basis set expansion. As one
or the other of these competing effects dominates within the
basis function sequence, erratic convergence to the CBS limit is
observed, making reliable extrapolations difficult. Examples of
this were observed in the bond length extrapolations in ref 369
for several of the single-reference methods; it was argued in these
cases that the additional wave function flexibility from the
increasing basis set size improves the description of the electron
correlation, which tends to shorten the computed bond lengths,
but it also reduces the artificial charge contamination of the SCF
reference function, which tends to lengthen the computed bond
lengths. MR expansions are inherently more flexible than SR
expansions, and such erratic convergence is less likely to
occur, or to be smaller in magnitude, for a MR sequence than for
an otherwise comparable SR sequence. In the bond length calcula-
tion example,369 the MCSCF reference space eliminates the
spurious charge contamination, leaving only themorewell-behaved
and smoothly convergent dynamical correlation effects to be
described by the MRCI extrapolation sequence. However, even
with MR methods, extrapolations that begin with small basis sets
can be unreliable.

Another difficulty with extrapolation methods is that a parti-
cular sequence of electronic structure methods may not be
convergent for all basis sets. An example of this is the SR-MPn
sequence of energy calculations. For a small cc-pVDZ basis
expansion, the SR-MPn sequence might converge smoothly to
a value, but for larger cc-pVTZ and cc-pVQZ basis sets, the SR-
MPn sequence can diverge. Olsen et al.435 and Helgaker et al.436

argue this divergence is often due to singularities for negative
values of the perturbation parameter which arise from the diffuse
functions of the larger basis sets. Negative values of the perturba-
tion parameter correspond to the nonphysical situation in which
electron interactions are attractive rather than repulsive, but
these nonphysical singularities adversely affect the mathematical
convergence properties of the SR-MPn sequence. (These are
called back-door intruder states in Chapter 14 of ref 436.)
Variational MR methods are typically less susceptible to these
convergence issues than PT methods, but they can arise none-
theless. An example is the MR-AQCC calculation on O3 with a
small 22 reference space. cc-pVDZ calculations result in a
reasonably accurate PES near the equilibrium geometry, but
larger cc-pVTZ and cc-pVQZ basis sets result in inaccurate PESs
and in very slow convergence. Both effects are due to basis-
dependent intruder-state issues. These problems all disappear
with larger, more flexible, reference spaces.369

Finally the general difficulty with all basis extrapolation
methods is that the effort for each basis scales with the basis size
asO(nX), whereX ranges from 4 for low-level methods (e.g., SCF
on small molecules), to 5 or 6 for higher accuracy electronic
structure methods (e.g., MCSCF, MRCI), up to the number of
electrons N for full-CI methods. The memory, storage, I/O, and
communication requirements for various methods also increase
with increasing basis size n. Thus the calculations required for the
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larger basis sets in the extrapolation sequence can become
expensive or, due to practical limitations, impossible.

The other general approach to addressing the orbital basis set
convergence issue is through the incorporation of explicit inter-
electron coordinates into the wave function or energy expres-
sion. This approach dates from the work of Hylleraas437 in 1928.
For the present discussion, it is the general formulation of
Kutzelnigg438 and Klopper439,440 in terms of standard MO basis
sets that is most applicable. The details of the method are
discussed in the recent review by Klopper et al.441 These
approaches are called R12 or F12 methods depending on the
specific form of the interelectronic interactions. This approach
was first applied to CI by R€ohse et al.442 for benchmark full-CI
calculations on H2 and H3

+. The formulation for general MRCI
expansions was given by Gdanitz443,444 in 1993 using the
COLUMBUS codes. In both cases, the R12 terms were limited
only to the reference space, the remaining expansion terms were
treated in the normal CI or ACPF approach. The newest version
of this method is available within the AMICA program,445 and
some applications are presented in refs 446�449. Te-No450

introduced an F12 extension to MR-MP2 method with internal
contraction that is applicable to larger molecular systems.
Varganov and Martinez451 use geminal augmentation with the
MCSCF method, but their implementation is limited to two-
electron systems. A novel approach was introduced by Torheyden
and Valeev452 which allows the calculation of the R12 second-order
correction for any reference state for which 1-RDM and 2-RDM
are available. The formalism uses internal contractions to obtain
the geminal replacements, but it can be applied equally well to
uncontracted MR-CISD as was demonstrated in ref 452. A spin-
free version has recently been proposed by Kong and Valeev.453

This is a very promising development since it would allow
application of R12 methods into arbitrary electronic structure
methods such as theGCF, DMRG, andCT approaches discussed
in sections 2.1.5 and 2.3. Recently an ic-MR-CISD-F12 approach
has been presented by Shiozaki et al.454,455 In general, the R12
terms in these methods are designed primarily to address the
description of the Kato cusp associated with dynamical correla-
tion,456 while the underlying MCSCF and MRCI expansions
describe the valence and other strong correlation effects, e.g., due
to near-degeneracies and curve crossings. Thus the fundamental
flexibility and general advantages of MR methods are retained.

These R12 methods are incorporated within a standard MO
basis set expansion, and therefore they still have artifacts associated
with the finite basis set truncation. However, when combined
with basis extrapolation approaches, the convergence to the CBS
limit occurs much faster, and therefore explicit calculations only
with the smaller basis sets441 are required. Thus within the basis
extrapolation sequence, any increase in effort due to the R12
methodology is offset by the use of smaller orbital basis sets.

2.5. Analytic Gradients of Multireference Methods
In this section an overview of some of the general features of

MCSCF and MRCI analytic energy gradients is presented. A
more detailed and complete discussion is given in the review
article of ref 21. The gradient formalism for these MR methods
may be compared to those of various SR methods discussed in
the review article of Pulay.457 The CSF expansion coefficients for
MCSCF and MRCI wave functions are variationally determined,
and this allows the Hellmann�Feynman theorem, using second-
quantized conventions for the Hamiltonian operator, to be
exploited. The choice of orbitals for the MRCI expansion is

somewhat arbitrary because of redundant orbital rotation vari-
ables associated with the MCSCF expansion space, and in
certain situations the resolution of these rotations must be
accounted for when computing the MRCI energy gradient.
One of the challenges of analytic gradient methods for MR
expansions has been the development and implementation of
general efficient procedures that match the flexibility and cap-
ability of the wave functions themselves.

A formal approach that meets this challenge of generality and
efficiency is based on a sequence of successive geometry-depen-
dent orbital transformations in which the effects of individual
constraints or conditions imposed on the orbitals may be
considered individually.21,458,459 In the straightforward case,
there would be four orbital basis sets.

u½C�ðRÞ ¼ χðRÞ Cð0Þ ð124Þ
u½S�ðRÞ ¼ u½C�ðRÞ S½C�ðRÞ�1=2 ð125Þ
u½K�ðRÞ ¼ u½S�ðRÞ expðKÞ ð126Þ
u½Z�ðRÞ ¼ u½K�ðRÞ expðZÞ ð127Þ

R denotes the coordinates of the atom centers, or more generally
the basis function centers, within the molecule. The actual
coordinates that are used in a calculation may be, for example,
the Cartesian coordinates of the atom centers or some choice of
internal coordinates. The basis χ(R) is the atom-centered AO
basis; as the atom centers move with the molecular geometry,
the associated basis functions move along with them. This AO
basis may be symmetry-adapted to the point group of the
molecule. The C(0) matrix contains the fully optimized and
resolved orbital coefficients at the reference geometry denoted,
for notational convenience,R = 0. It is the analytic gradient at this
reference geometry that is of interest. The basis u[C](R) is a
geometry-dependent basis that generally is orthonormal only at
R = 0. The symmetric positive-definite matrix S[C](R) is the
orbital overlap matrix in the u[C](R) basis, and it is used to
define460 the basis u[S](R) which is orthonormal at all R. The
basis u[K](R) is the energy-optimized orthonormal orbital basis
defined in terms of the skew-symmetric matrix K whose nonzero
elements correspond to the essential MCSCF orbital rotation
parameters. Finally, u[Z](R) is the fully resolved orbital basis
defined in terms of the skew-symmetric matrix Z whose nonzero
elements correspond to the redundant MCSCF orbital rotation
parameters. The two sets of orbital rotation parameters, essential
and redundant, are disjointed in the sense that a nonzero Kpq

element implies a zero Zpq element, and a nonzero Zpq element
implies a zero Kpq element. With an appropriate ordering of the
MO basis functions, the Zmatrix assumes a block-diagonal form
and the K matrix assumes a complementary block-off-diagonal
form (see Figure 1 in ref 21). It is this final orbital basis u[Z](R)
that is used to define the MRCI wave function at the reference
geometry. With this sequence of orbital transformations it is seen
that u[C](0) = u[S](0) = u[K](0) = u[Z](0), but these orbital
bases are generally different at arbitrary R 6¼ 0. In this formula-
tion, the orbital bases u[K](R) and u[Z](R) are orthonormal
because the transformation matrices exp(K) and exp(Z) are
intrinsically orthogonal; thus no additional constraints need to be
satisfied, and no additional optimization variables, particularly in
the form of Lagrange multipliers, are introduced. In more general
situations, there might be several orbital optimization steps
involved in computing the orbitals for the final MRCI energy
and wave function. This successive orbital transformation
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approach may be generalized in a straightforward way to account
for any arbitrary sequence of orbital optimization steps.21

The general approach to computing a particular analytic
energy gradient will be similar for all of the electronic structure
methods discussed in this section. The energy as a function of R
will be written in terms of the geometry-dependent one- and two-
electron integrals in the most appropriate orbital basis. This will
also involve the geometry-dependent density matrices, transition
density matrices, and various other combinations of these quantities
such as geometry-dependent Fock matrices. Expansion techniques
will be used to determine the first-order dependence of the
energy on the various geometry-dependent quantities at the
reference geometry R = 0. Finally, the transformation properties
of these quantities, consistent with eqs 124�127, will be used as
necessary to simplify the expressions, to isolate the geometry-
dependent factors from the geometry-independent factors, and
eventually to express the analytic energy gradient as simple
summations of the derivatives of the overlap integrals and the
one- and two-electron Hamiltonian integrals in the AO basis.
2.5.1. Single-State MCSCF Gradient. A summary of some

of the important features of the MCSCF gradient for a single
electronic state follows. These features will then form the
foundation for the discussion of the other wave functions. A trial
MCSCF wave function may be written in the u[S](R) orbital
basis as a generalization of eq 70.

jψtrialðRÞæ ¼ expðKðRÞÞ expðPðRÞÞjref ðRÞ; ½S�æ ð128Þ
The reference wave function |ref(R)æmay be chosen to be either
a ground or an excited electronic state; a ground state would
correspond to the lowest Hamiltonian matrix eigenpair at R = 0,
whereas an excited state would correspond to a higher eigenpair.
The ordering of the statesmay, of course, change at various values of
R, so it is important for the formalism to remain general in this
respect. It is convenient to take |ref(R)æ to be the optimized
MCSCF wave function at R = 0, and at displaced geometries to
be the wave function with the same normalized CSF expansion
coefficients, ||cmc(0)||2 = 1, but represented in the corresponding
orthonormal u[S](R) orbital basis. This reference wave function
will be denoted |mc(0);[S]æ, and there is a corresponding reference
PES associated with this reference wave function defined as

Eref ðRÞ ¼ Æmcð0Þ; ½S�jH½S�ðRÞjmcð0Þ; ½S�æ
¼ ∑

r, s
h½S�rs ðRÞÆmcð0Þ; ½S�jErsjmcð0Þ; ½S�æ

þ 1
2 ∑p, q, r, s

g½S�pqrsðRÞÆmcð0Þ; ½S�jepqrsjmcð0Þ; ½S�æ

¼ Trðh½S�ðRÞDmc½s�ð0ÞÞ þ 1
2
Trðg½S�ðRÞdmc½S�ð0ÞÞ

ð129Þ
The last expression in particular shows that all of the geometry
dependence of this reference energy surface derives from the
geometry dependence of the one- and two-electron integrals that
define the second-quantized Hamiltonian operator. The reduced
density matrices Dmc[S](0) and dmc[S](0) are geometry-indepen-
dent because (i) they depend on the geometry-independent
coupling coefficients and (ii) they depend on the fixed, reference-
geometry, CSF expansion coefficients cmc(0). The above refer-
ence PES is never actually computed at arbitrary R; it is rather a
formal construct that is used to reveal how the various quantities
depend on the molecular displacements R.

The trial energy expectation value may then be written

EtrialðK, p;RÞ ¼ ÆψtrialðRÞjHðRÞjψtrialðRÞæ
¼ Æmcð0Þ; ½S�j expð � PðRÞÞ expð � KðRÞÞ HðRÞ
�expðKðRÞÞ expðPðRÞÞæmcð0Þ; ½S�æ

¼ Eref ðRÞ þ ð kðRÞT pðRÞT Þ f orbðRÞ
f csf ðRÞ

 !

þ 1
2
ð kðRÞT pðRÞT Þ Gorb, orbðRÞ Gorb, csf ðRÞ

Gcsf , orbðRÞ Gcsf , csf ðRÞ

 !
kðRÞ
pðRÞ

 !
þ ...

¼ Eref ðRÞ þ λðRÞ 3 fðRÞ þ 1
2
λðRÞT GðRÞ λðRÞ þ ...

ð130Þ
which corresponds to eq 72 with the R-dependence denoted
explicitly. At any arbitrary R, the MCSCF wave function para-
meters λmc(R) are those that satisfy the variational conditions
∂Etrial(λ(R);R)/∂λ = 0. This results in a coupled set of nonlinear
equations

0 ¼ fmcðRÞ þ GmcðRÞ λmcðRÞ þ OðλmcðRÞ2Þ... ð131Þ
that must be satisfied by the parameters λmc(R) at arbitrary R.
There is no closed-form solution to this equation. However, this
equation is sufficient to determine the corresponding Taylor
expansion of the geometry-dependent parameters λ(R) relative
to the reference geometry R = 0 values. Differentiating eq 131
with respect to a displacement of a representative atomic center
coordinate denoted x, evaluation at the reference geometry, and
using the relation λmc(0) = 0 give

λmcð0Þx ¼ �Gmcð0Þ�1 fmcð0Þx ð132Þ
The superscript x denotes differentiation, and it is used to
identify quantities that depend on some displacement of the
molecular geometry. This gives the first-order change in the
MCSCF orbitals and CSF expansion coefficients at the reference
geometry to the displacement along the coordinate direction
labeled by x. TheMCSCF energy at arbitraryR is given by eq 130
with the specific Kmc(R) and pmc(R) parameters determined
from eq 131. Differentiation of this energy expression with
respect to a geometry displacement and evaluation at R = 0
gives an element of the MCSCF analytic energy gradient

Emcð0Þx ¼ Eref ð0Þx þ λð0Þ 3 fð0Þx þ λð0Þx 3 fð0Þ þ ::: ð133Þ
¼ Eref ð0Þx ð134Þ

The truncation follows from the relations f(0) = 0 and λ(0) = 0.
This is an example of the Hellmann�Feynman theorem using
second-quantized conventions for the definition of the Hamilto-
nian operator: the first-order wave function does not contribute
to the single-state MCSCF energy gradient. The MCSCF energy
gradient may be written

Emcð0Þx ¼ Eref ð0Þx ¼ Æmcð0Þ; ½S�jĤ½s�ð0Þxjmcð0Þ; ½S�æ
¼ cmcð0ÞT Ĥ

½s�ð0Þx cmcð0Þ
¼ Trðh½S�ð0Þx Dmc½S�ð0ÞÞ þ 1

2
Trðg½S�ð0Þx dmc½S�ð0ÞÞ

ð135Þ
This last expression shows that the density matrices contain the
displacement-independent factors of the energy gradient
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elements, which are shared by all possible displacements x, and
the derivative integrals contain all of the displacement-dependent
factors for each displacement direction x. If the energy gradient
were evaluated using this expression, the entire set of derivative
terms h[S](0)x and g[S](0)x for up to 3Natom possible displace-
ment directions x would need to be computed. This would
require effort proportional to 3Natom. A more efficient approach
is to transform the gradient expression back to the original AO
basis. Using the sequence of orbital transformations eqs 124 and
125, the gradient component may be written as21

Emcð0Þx ¼ Trðh½χ�ð0Þx Dmc½χ�ð0ÞÞ þ 1
2
Trðg½χ�ð0Þx dmc½χ�ð0ÞÞ

� TrðS½χ�ð0Þx Fmc½χ�ð0ÞÞ ð136Þ
The AO density and Fock matrices are computed as

Fmc½χ�μv ð0Þ ¼ ∑
pq

Cð0Þμp Cð0Þvq Fmc½C�pq ð0Þ

Dmc½χ�
μv ð0Þ ¼ ∑

pq
Cð0Þμp Cð0Þvq Dmc½C�

pq ð0Þ

dmc½χ�μvλσ ð0Þ ¼ ∑
pqrs

Cð0Þμp Cð0Þvq Cð0Þλr Cð0Þσs dmc½C�pqrs ð0Þ

ð137Þ

The transformation of these arrays is similar to the one- and two-
electron integral transformation operation. The actual operation
counts differ because, in the typical situation, arrays are trans-
formed from the smaller occupied orbital basis to the larger
AO basis.
The final expression eq 136 is important because the two-

electron Hamiltonian integrals are very sparse in the atom-
centered AO basis. A particular two-electron repulsion integral
depends on, at most, only four atom centers, or 12 Cartesian
displacements, out of the 3Natom total possible displacements.
Consequently, there are only about 12 times as many nonzero
AO derivative integrals as undifferentiated AO integrals. Further-
more, the computation of the AO derivatives by shells allows
reuse of various intermediate quantities, resulting in an even
more efficient overall procedure.461 By exploiting these features,
the trace operation may be computed in the AO basis with effort
that is formally independent ofNatom; i.e.,O(Natom

0 ) =O(1). This
simplification affects the number of arithmetic operations re-
quired to evaluate the energy gradient and the total amount of
memory and external storage space that is required for the
computation. Thus the analytic gradient procedure described
above is both more efficient and more accurate than a finite-
difference approach, and it has similar advantages when these
gradients are used to fit molecular potential energy surfaces,462 to
optimize molecular geometries, or when they are used directly to
compute classical dynamical trajectories.365 In ref 369 molecular
geometry optimizations were performed for 20 molecules using
MCSCF wave functions and with a variety of orbital basis sets
and a wide range of CSF expansion spaces. The effort for the
MCSCF gradient evaluations for these molecules required
between 8.0 and 84.4% of the total computational effort
(including integral evaluation and wave function optimization),
with a mean of 58.1%. These timings demonstrate that the
computational procedure presented above is very efficient, that
it is independent of Natom, and that it may be applied to any

molecule for which theMCSCFwave function optimization itself
is practical.
2.5.2. State-Averaged MCSCF Gradient. For state-aver-

aged calculations, the trial wave function parametrization of
eqs 63�70 is generalized as

PðRÞ ¼ ∑
Nav

j
PjðRÞ ð138Þ

PjðRÞ ¼ jpjðRÞæÆmcjð0Þj � jmcjð0ÞæÆpjðRÞj ð139Þ
jpjðRÞæ ¼ ∑

Ncsf

m
pjmðRÞjm; ½S�æ ð140Þ

In analogy to the single-state case, the reference states |mcj(0)æ
are defined with the u[S](R) orbitals and with the fixed CSF
coefficients cj(0) corresponding to the jth eigenpair atR= 0. This
generalization allows an averaged trial energy to be written

E̅trialðk, p1:Nav ;RÞ ¼ ∑
Nav

j
wjEtrialj ðk, p1:Nav ;RÞ

¼ ∑
Nav

j
wjÆmcjð0Þ; ½S�j expð � PÞ expð � KÞH expðKÞðPÞjmcjð0Þ; ½S�æ

¼ E̅ref ðRÞ þ ð kT p1:Nav , T Þ f̅orb
f 1:Nav
csf

 !

þ 1
2
ð kT P1:Nav , T Þ G̅orb, orb G1:Nav

orb, csf

G1:Nav
csf , orb G1:Nav

csf , csf

0@ 1A k
p1:Nav

 !
þ ...

ð141Þ
The vector p1:Nav(R) corresponds to the concatenation of the
individual pj(R) vectors for each of the states included in the state
average. The state-averaged quantities

E̅ref ðRÞ ¼ ∑
Nav

j
wjE

ref
j ðRÞ ð142Þ

f̅ orbðRÞ ¼ ∑
Nav

j
wjf

j
orbðRÞ ð143Þ

G̅orb;orbðRÞ ¼ ∑
Nav

j
wjG

j
orb;orb ð144Þ

are defined in terms of their state-specific components, but they are
most efficiently computed using state-averaged density matrices.365

Thefirst-order equation for the orbital andCSF response in terms of
these augmented gradient and Hessian matrices is

kð0Þx
p1:Nav ð0Þx

 !
¼

� G̅orb, orbð0Þ G1:Nav
orb, csf ð0Þ

G1:Nav
csf , orbð0Þ G1:Nav

csf , csf ð0Þ

0@ 1A�1

f̅ orbð0Þx
f 1:Nav
csf ð0Þx

 !
ð145Þ

Differentiation of the state-averaged trial energy with the
optimal wave function parameters with respect to a displace-
ment, and evaluation at R = 0, gives, in principle, the state-
averaged energy gradient Emc(0)x analogous to eq 135, in terms
of the state-averaged density matrices. However, it is not the
gradient of the state-averaged Emc(R) that is of interest; it is rather
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the gradients of the individual states that are important. It is
the energy gradients of the individual states that determine, for
example, the classical trajectories on these PESs. This gradient is
given by substituting the k(0)x and pj(0)x for a particular state
into the state-specific energy expression, eq 130. After truncation,
this gives

Emcj ð0Þx ¼ Erefj ð0Þx þ kð0Þx 3 f jorbð0Þ ð146Þ
In contrast to eq 134, the generally nonzero state-specific orbital
gradient terms f orb

j (0) are seen to contribute to the energy
gradient expression through the first-order change in the orbitals.
The f csf

j (0) terms are zero, and the pj(0)x response terms do not
contribute in eq 146 because of the Hellmann�Feynman rela-
tion. The next step is to express this contribution to the gradient
in a form that allows for efficient evaluation. To this end, eq 146 is
written in the slightly modified form

Emcj ð0Þx ¼ Erefj ð0Þx þ ðkð0Þx, T, p1:Navð0Þx, TÞ f jorbð0Þ
01:Nav

 !
ð147Þ

and eq 145 is used to give the following sequence of
identities21,458,459,463,464

Emcj ð0Þx¼ Erefj ð0Þx � ðf̅ orbð0Þx;T; f 1:Nav
csf ð0Þx;TÞ

� G̅orb;orbð0Þ G1:Nav
orb;csf ð0Þ

G1:Nav
csf ;orbð0Þ G1:Nav

csf ;csf ð0Þ
f jorbð0Þ
01:Nav

 !! 

¼ Erefj ð0Þx þ ðf̅ orbð0Þx;T; f 1:Nav
csf ð0Þx;TÞ λjorbð0Þ

λ1:Nav
csf ð0Þ

 !
ð148Þ

¼ Erefj ð0Þx þ f̅orbð0Þx 3 λjorbð0Þ

þ ∑
Nav

k
f kcsf ð0Þx 3 λk;jcsf ð0Þ ð149Þ

As written, this expression for the energy gradient would
require the computation of the forb(0)

x and fIcsf(0)
x vectors

for all 3Natom possible displacements. However, the density
matrices21,459

D̅j;λ
pq ¼ ∑

Ncsf

m
∑
Nav

k
λk, jcsf ð0ÞmÆmjEpq þ Epqjmckð0Þæ

d̅j;λpqrs ¼
1
2 ∑

Ncsf

m
∑
Nav

k
λk, jcsf ð0ÞmÆmjepqrs þ eqprs þ epqsr þ eqpsrjmckð0Þæ

D̅Λj ¼ �fDmcð0Þ;Λjg d̅Λj ¼ �fdmcð0Þ;Λjg ð150Þ
may be used to write the gradient in the same general form as the
single-state expression

Emcj ð0Þx ¼ Trðh½S�ð0ÞxðDj þ D̅Λj þ D̅j;λÞÞ
þ 1
2
Trðg½S�ð0Þxðdj þ d̅Λj þ d̅j;λÞÞ

¼ Trðh½S�ð0ÞxDj, totalÞ þ 1
2
Trðg½S�ð0Þxdj, totalÞ

ð151Þ
All of the displacement dependence occurs within the Hamilto-
nian integrals, and the effective density matricesDj,total and dj,total

are computed only from displacement-independent quantities.
The analytic energy gradient can be computed in the atom-
centered AO basis using the same sequence of transformations as
in the single-state case.

Emcj ð0Þx ¼ Trðh½χ�ð0Þx Dj, total½χ�ð0ÞÞ

þ 1
2
Trðg½χ�ð0Þx dj, total½χ�ð0ÞÞ � TrðS½χ�ð0Þx Fj, total½χ�ð0ÞÞ

ð152Þ
As with the single-state wave function optimization case, this

allows the energy gradient for each state j within the state-
averaging procedure to be computed with effort that is formally
independent of Natom. The additional effort corresponding to
eqs 148�151 is comparable to that of a single iteration of the
state-averaged MCSCF energy optimization procedure. Thus, if
the state-averaged wave functions and energy can be computed,
then it is also practical to compute the energy gradients for the
states of interest.
2.5.3. MRCI Gradient. For the MRCI energy, the CSF

expansion coefficients are variationally optimized, which means
that the eigenvalue equation

H½Z�ðRÞ cjðRÞ ¼ Ecij ðRÞ cjðRÞ ð153Þ
is satisfied at all R. Differentiating this expression with
respect to an atomic center displacement and evaluation at
R = 0 results in

Ecij ð0Þx ¼ cjð0ÞT H½Z�ð0Þx cjð0Þ
¼ Æcijð0Þ; ½Z�jH½Z�ð0Þxjcijð0Þ; ½Z�æ

¼ ∑
Ncsf

m, n
cjmð0Þ cjnð0ÞÆm; ½Z�jH½Z�ð0Þxjn; ½Z�æ

¼ Trðh½Z�ð0Þx Dj, ci½z�ð0ÞÞ þ 1
2
Trðg½Z�ð0Þx dj, ci½Z�ð0ÞÞ

ð154Þ
with the wave function normalization ||cj(0)||2 = 1. With regard
to the MCSCF energy gradient expression in eq 135, the first-
order CI wave function response cj(0)x does not contribute to
the energy gradient, and the Hellmann�Feynman theorem is
seen to be satisfied for the CI energy gradient. In order to
avoid the effort of constructing the derivative integrals in
the u[Z](R) basis, the orbital transformation sequence in
eqs 124�127 and the commutator expansion of the Hamiltonian
operator allows the CI energy gradient to be written in the
u[S](R) basis.

Ecij ð0Þx ¼ Æcijð0Þ; ½S�jH½S�ð0Þx þ ½H½S�ð0Þ;Kð0Þx�
þ ½H½S�ð0Þ;Zð0Þx�jcijð0Þ; ½S�æ ð155Þ
¼ Æcijð0Þ; ½S�jH½S�ð0Þxjcijð0Þ; ½S�æ
þ kmcð0Þx 3 f

j;ci
orbð0Þ þ zmcð0Þx 3 f

j;ci
orbð0Þ ð156Þ

The first two terms of eq 156 are of the type previously
considered in eqs 146�152 for the state-averaged MCSCF
energy gradient, except here, the CI density matrices and CI
orbital rotation gradient vector elements are used rather than
MCSCF density and gradient elements. In general, the f j,ci(0)
orbital rotation gradient vector is nonzero because the orbitals
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are optimized for the MCSCF expansion, not for the CI
expansion.
The last term is a new type of gradient contribution that

derives from the orbital resolution of the MCSCF wave function.
The last term contributes to the gradient only when the
combination zmc(0)pq

x and f j,ci(0)pq are both nonzero for some
particular orbital rotation pair indexed by (pq). As discussed in
section 2.2, the Zmc matrix assumes a block-diagonal form with
the appropriate choice of orbital ordering, and it has nonzero
elements only for orbital rotations for which the MCSCF energy
is invariant. Thus, a particular f j,ci(0)pq element can contribute to
only one of the last two terms in eq 156; it cannot contribute to
both. Due to the variational determination of the CI expansion
coefficients, however, the elements of the CI orbital gradient
f j,ci(0)pq are zero for orbital rotations that are redundant in the CI
wave function.21 This eliminates such gradient contributions for
large classes of CI expansion spaces. For example, if the CI
expansion space has exactly the same invariant orbital subspaces
as the MCSCF reference expansion, which is a common occur-
rence, then the last term in eq 156 cannot contribute to the
energy gradient, and it may be ignored. Thus, the only remaining
contributions to the last term in eq 156 are the orbital rotations
that are redundant in the MCSCF expansion (nonzero Zpq

mc,
zero Kpq

mc) but are essential in the CI expansion space (nonzero
f j,ci(0)pq). There are three common situations for which this
occurs. The first, and probably most common, is the frozen core
situation which occurs when a proper subset of the MCSCF
inactive orbitals is constrained to be doubly occupied in the CI
expansion CSFs. The CI wave function, energy, and therefore the
gradient then depend on exactly which of those orbitals are
frozen from this set and which are correlated. The typical orbital
resolution consists of diagonalizing the diagonal subblock of an
MCSCF Fock matrix within the MCSCF inactive orbital space.
The orbitals associated with the lowest eigenvalues are frozen in
the CI expansion, and the remaining orbitals are allowed to have
various occupations. Some orbital basis sets are designed to
describe well the core orbitals but are not designed to describe
well the dynamical correlation of those core electrons, and wave
functions expanded with these types of AO basis sets should have
their core orbitals frozen in any post-SCF type of calculation.461

A second common situation occurs with frozen virtual orbitals
in which there are very high-lying MCSCF virtual orbitals that
would contribute only negligibly to the CI wave function. It is
typical in this case to diagonalize the diagonal subblock of an
MCSCF Fock matrix and delete the MOs associated with the
highest eigenvalues. This is formally equivalent to constraining
those orbitals to be unoccupied in all CSFs within the CI
expansion, but by removing the orbitals entirely from the MO
basis, the overall cost of the CI calculation is reduced. The
existence of such high-lying virtual orbitals also depends on the
choice of AO basis sets. Most modern, generally contracted,465

AO basis sets, e.g., the correlation-consistent basis sets of
Dunning466 or the ANO approach of Alml€of and Taylor,467,468

are designed so that these types of molecular orbitals do not
appear. It is primarily the older-style AO basis sets defined with
segmented contractions that suffer from this artifact, or also
certain benchmark calculations that are sometimes done in the
primitive uncontracted Gaussian basis.
A third, perhaps less common, situation occurs when an active

orbital in the MCSCF expansion becomes nearly doubly occupied
or when an active MCSCF orbital occupation becomes almost
zero. In these cases, the subsequent CI expansion is sometimes

constructed that treats this orbital as if it were an MCSCF
inactive orbital or an MCSCF virtual orbital. This might be done
in order to reduce the CI expansion length, but it might also be
done, for example, to eliminate some kind of convergence
problem associated with intruder states in the expansion (e.g.,
caused by configurations with occupied MCSCF virtual orbitals
that have higher occupations or lower energies than reference
configurations involving MCSCF active orbitals). In these situa-
tions, the orbitals are typically resolved by diagonalizing either
the diagonal subblock of an active-orbital Fock matrix or the
diagonal subblock of the MCSCF 1-RDM (i.e., natural orbital
resolution). The formalism has been developed generally to
allow various other orbital resolution approaches, but, practically
speaking, these other possibilities are less common. For example,
the resolution based on successive diagonalizations of the CI
1-RDM, the iterative natural orbital approach,1 which was once a
fairly common technique, is now used rarely. The orbital resolu-
tions discussed above may be combined in a very flexible and
general manner. Different invariant orbital subspaces may be
treated separately and resolved in different ways, and the
corresponding effective operators and density matrices are
computed accordingly. Amore complete discussion of the orbital
resolution effects for various combinations of reference and MRCI
expansion spaces may be found in the review article in ref 21.
Ultimately, the last term in eq 154, involving zmc(0)x, may be

cast into an expression similar to eq 147. From there it is
straightforward to separate the displacement-dependent terms
(which carry the coordinate x superscript in these equations)
from the displacement-independent terms and to arrive at the
final equation for the gradient in terms of the sparse derivative
integrals in the AO basis.

Emcj ð0Þx ¼ Trðh½χ�ð0Þx Dj, total½χ�ð0ÞÞ þ 1
2
Trðg½χ�ð0Þx dj, total½χ�ð0ÞÞ

� TrðS½χ�ð0Þx Fj, total½χ�ð0ÞÞ ð157Þ
The total effort to construct the gradient vector is dominated,
particularly for large CI expansions, by the effort to construct the
CI reduced density matrices Dj,ci(0) and dj,ci(0). This requires
roughly the same effort as that of a single Hamiltonian matrix�
vector product operation during the iterative solution of the
eigenvalue equation at the reference geometry. A consequence of
this is that, unlike most other electronic structure methods, the
CI energy gradient requires typically less effort than the compu-
tation of the CI wave function and energy itself. The above
gradient formulation also applies to MR-ACPF and MR-
AQCC energy expressions.21 For the 20 molecules studied
in ref 369, the effort for the MRCI and MR-AQCC gradient
evaluations required between 2.5 and 52.2% of the total
computational effort, with a mean of 9.9% over the entire
set of molecules and basis sets. This demonstrates that the
computational procedure outlined above is very efficient, that
it is independent of Natom, and that it may be applied to any
molecule for which the CI wave function optimization itself is
practical.

2.6. Nonadiabatic Coupling for Multireference Wave
Functions

The formalism and application of nonadiabatic coupling using
multireference wave functions have been reviewed recently by
Barbatti et al.365 Some of the important features of this overall
approach are summarized here. The basic problem in dynamics
simulations of molecules is to solve the time-dependent



142 dx.doi.org/10.1021/cr200137a |Chem. Rev. 2012, 112, 108–181

Chemical Reviews REVIEW

Schr€odinger equation for the molecular system

ip
∂

∂t
�Hðr,RÞ

� �
Ψðr,R, tÞ ¼ 0 ð158Þ

This molecular Hamiltonian operator includes both nuclear R
and electronic r coordinates, H(r,R) = Tnuc(R) + Hel(r;R).
Tnuc(R) is the nuclear kinetic energy, and Hel(r;R) includes
(cf. eq 7) the electronic kinetic energy, the electron�nuclear
attraction, the electron�electron repulsion, and, by convention,
also the nuclear�nuclear repulsion. The total wave function can
be written as a Born expansion (see, e.g., ref 469)

Ψðr,R, tÞ ¼ ∑
j
Ψnuc

j ðR, tÞ Ψel
j ðr;RÞ ð159Þ

In this expansion, ψj
el(r;R) is the usual clamped-nucleus electro-

nic wave function for electronic state j, evaluated at the nuclear
configuration R. Equation 159 itself is not an approximation, but
truncation of the summation to a limited number of interacting
states is a practical necessity. Substituting eq 159 into eq 158,
multiplying from the left by ψk

el(r;R)*, and integrating over the
electronic coordinates gives

ip
∂

∂t
� Tnuc

� �
Ψnuc

k þ ∑
j
ð �Hjk þ ipFjk 3 v þ GjkÞΨnuc

j ¼ 0

ð160Þ
with

HjkðRÞ ¼ Æψel
j jHeljψel

k ær ð161Þ

GjkðRÞ ¼ Æψel
j jTnucjψel

k ær ð162Þ

FmjkðRÞ ¼ Æψel
j j∇mjψel

k ær ð163Þ
vm � �ip

Mm
∇m ð164Þ

The indexm ranges over the nuclear centers, each with massMm.
Reference 365 discusses various methods in which eq 160 is
approximated and solved in order to determine chemical reaction
dynamics. The quantities Hjk, Gjk, and Fjk

m together determine
how, for example, a quantum wave packet transfers its amplitude
among the various electronic states during a chemical reaction. In
the adiabatic representation Hjk(R) = Vk(R)δjk, the electronic
energy Vk(R) assumes the role of a potential energy for the
nuclear motion, and the kinetic energy and velocity-dependent
terms determine the nonadiabatic coupling among the various
electronic states. Alternatively, in the diabatic representation
the electronic states are transformed among themselves in order
to eliminate the kinetic energy and velocity-dependent coupling
in eq 160, and it is the off-diagonal Hjk elements in this diabatic
basis that determine the nonadiabatic coupling. In either case, the
important electronic states are first computed in order to form
the basis states for eq 159, and the coupling elements in this basis
must be evaluated according to eqs 160�164. This section
focuses on the nonadiabatic coupling vector elements Fjk(R).
This is a vector of length 3Natom, and an individual element of this
vector

FjkðRÞx ¼ ψel
j ðr;RÞ

����� ∂∂x
�����ψel

k ðr;RÞ
* +

r

ð165Þ

determines the coupling between electronic states j and k at the
molecular geometry R. Expansion of the electronic wave func-
tions in a CSF basis in the fully optimized and resolved orbital
basis u[Z](R) in eq 127 allows the wave function derivative to be
written

∂

∂x
jψel

k æ ¼ ∂

∂x ∑
Ncsf

m
ckmðRÞjmðR; ½Z�Þæ

¼ ∑
Ncsf

m

∂

∂x
ckmðRÞ

� �
jmðR; ½Z�Þæ þ ∑

Ncsf

m
ckmðRÞ

∂

∂x
jmðR; ½Z�Þæ

ð166Þ
The CSF expansion in eq 166 can be either an MCSCF expan-
sion or a generalMRCI expansion, with the orbitals optimized for
either single-state MCSCF or state-averaged MCSCF energies.
The following equations are the same in any case. Equation 166
allows the nonadiabatic coupling element to be written as two
contributions

fjkðRÞx ¼ f cijk ðRÞx þ f csfjk ðRÞx ð167Þ
with

f cijk ðRÞx ¼ ∑
Ncsf

m, n
cjmðRÞ

∂

∂x
cknðRÞ

� �
ÆmðR; ½Z�jnðR; ½Z�æ

¼ cjðRÞ 3 ckðRÞx ð168Þ

f csfjk ðRÞx ¼ ∑
Ncsf

m, n
cjmðRÞ cknðRÞÆmðR; ½Z�ÞjX̂jnðR; ½Z�Þææ ð169Þ

with

X̂ ½Z�ðRÞ¼ ∑
p, q

X ½Z�
pq ðRÞEpq

X ½Z�
pq ðRÞ ¼

Z
j½z�
p ðτ;RÞ ∂

∂x
j½z�
q ðτ;RÞ dτ

ð170Þ

These two contributions to the nonadiabatic coupling element
are examined separately. Differentiating eq 153 with respect to a
coordinate and evaluation at R = 0 gives an expression for the
first-order response of the CSF expansion coefficients to a
perturbation

ðH½Z�ð0Þ � Ecik ð0Þ1Þckð0Þx

¼ � ðH½Z�ð0Þx � Ecik ð0Þx1Þckð0Þ ð171Þ
Multiplication from the left by cj(0)T results in

f ciJI ð0Þx ¼ ðEcik ð0Þ � Ecij ð0ÞÞ�1cjð0ÞT H½Z�ð0Þx ckð0Þ

¼ ðEcik ð0Þ � Ecij ð0ÞÞ�1 Trðh½Z�ð0Þx Djk, cið0ÞÞ þ 1
2
Trðg½Z�ð0Þx djk, cið0ÞÞ

� �
ð172Þ

¼ ðEcik ð0Þ � Ecij ð0ÞÞ�1 Trðh½S�ð0Þx Djk, cið0ÞÞ
�

þ 1
2
Trðg½S�ð0Þx djk, cið0ÞÞ þ kmcð0Þx 3 f jk, cið0Þ þ zmcð0Þx 3 f jk, cið0Þ

�
ð173Þ
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Using the variational nature of cj(R) in this manner is analogous
to the Hellmann�Feynmann theorem for expectation values in
that it avoids the explicit computation of ck(0)x in eq 171; if
computed, this would be relatively expensive, and also the effort
would be proportional to Natom. Equation 173 is analogous to
eq 156, but it uses the symmetrized transition density matrices
Djk,ci(0) and djk,ci(0) in place of the state-specific CI density
matrices in the trace expressions and in the effective orbital
gradient vectors f jk,ci(0). As with theMCSCF and CI gradients
discussed in the previous section, these density matrices are
the displacement-independent factors, whereas the derivative
integrals are the displacement-dependent factors in this ex-
pression. The expression in eq 173 can be transformed to the
AO basis using the same sequence of steps as in the MCSCF
and CI gradients, but with the effective orbital gradient,
Fock matrices, and all other quantities written in terms of
the symmetric transition density matrices rather than the
state-specific density matrices in the various orbital basis
sets. Before considering this transformation further, the
other contribution to the nonadiabatic coupling element is
examined.

The fjk
csf(R)x coupling of eq 169 may be written in the u[Z](R)

orbital basis at R = 0 as

f csfjk ð0Þx ¼ ∑
p, q

X ½Z�
pq Æcið0ÞjEpqjcikð0Þæ ð174Þ

The relation 0 = Spq
[Z](0)x = Xpq

[Z](0) + Xqp
[Z](0) shows that the

orbital matrixX[Z](0) is skew-symmetric. This allows the fjk
csf(0)x

coupling to be written in terms of the skew-symmetric CI one-
particle density

f csfjk ð0Þx ¼ ∑
p, q

1
2
X ½Z�
pq ð0ÞÆcijð0ÞjÊpq � Êqpjcikð0Þæ

¼ ∑
p, q

X ½Z�
pq ð0Þ Dð�Þjk

qp ð0Þ

¼ TrðX½Z�ð0Þ Dð�Þjkð0ÞÞ ð175Þ

Using eqs 124�127 and evaluation at R = 0 give

X ½Z�
pq ð0Þ ¼ X ½C�

pq ð0Þ �
1
2
S½C�pq ð0Þx þ Kmcð0Þxpq þ Zmcð0Þxpq

¼ 1
2
ðX ½C�

pq ð0Þ � X ½C�
qp ð0ÞÞ þ Kmcð0Þxpq þ Zmcð0Þxpq

ð176Þ

Because of the disjoint partitioning of the MCSCF essential and
redundant orbital rotation elements, only one of the last two
terms in eq 176 can be nonzero for a given orbital index pair (pq).
Equation 175 can then be written as

f csfjk ð0Þx ¼ TrðX½C�ð0Þ Dð�Þjkð0ÞÞ
þ TrðKmcð0Þx Dð�Þjkð0ÞÞ þ TrðZmcð0Þx Dð�Þjkð0ÞÞ
¼ TrðX½C�ð0Þ Dð�Þjkð0ÞÞ þ kmcð0Þx 3 f jk,Dorb ð0Þ
þ zmcð0Þx 3 f jk,Dorb ð0Þ ð177Þ

with forb
jk,D(0)(pq) = 2Dqp

(�)jk(0). Upon comparing eq 177 with
eq 173, the common factors can be combined to give

fjkð0Þx ¼ f cijk ð0Þx þ f csfjk ð0Þx ¼ TrðX½C�ð0Þ Dð�Þjkð0ÞÞ
þ ðEcik ð0Þ � Ecij ð0ÞÞ�1 Trðh½S�ð0Þx Djk, ci½Z�ð0ÞÞ

�
þ 1
2
Trðg½S�ð0Þx djk, ci½Z�ð0ÞÞ

�
þ ðkmcð0Þx

þ zmcð0ÞxÞ 3 ððEcik ð0Þ � Ecij ð0ÞÞ�1f jk, cið0Þ þ f jk,Dð0ÞÞ
¼ TrðX½C�ð0Þ Dð�Þjkð0ÞÞ þ Trðh½S�ð0Þx Djk, eff ð0ÞÞ

þ 1
2
Trðg½S�ð0Þx djk, eff ð0ÞÞ þ kmcð0Þx 3 f jk, efforb ð0Þ

þ zmcð0Þx 3 f jk, efforb ð0Þ ð178Þ
where the effective density matrices and orbital gradient vector
include the CI energy-difference factors as appropriate. The
transformation steps of eqs 146�152 may be applied to trans-
form this expression to the AO basis in which the derivative
integral sparseness may be exploited.

fjkð0Þx ¼ Trðh½χ�ð0Þx Djk, total½χ�ð0ÞÞ þ 1
2
Trðg½χ�ð0Þx djk, total½χ�ð0ÞÞ

� TrðS½χ�ð0Þx Fjk, total½χ�ð0ÞÞ þ TrðX½χ�ð0Þx Dð�Þjk½χ�ð0ÞÞ
ð179Þ

Given the symmetric transition density matrices and effective
orbital gradient vectors, the steps of the analytic energy gradient
procedure may be applied, and the contributions from the first
three terms in eq 179 may be computed in a straightforward
manner. The last term in eq 179 is unique to the nonadiabatic
coupling element. However, it involves only the skew-symmetric
component of the one-particle transition CI density matrix,
which requires an insignificant additional effort to compute along
with the symmetric component which is used in the first terms.
The above procedure may be applied to both MCSCF and
general MRCI wave functions. As a practical matter, only the
states with the largest coupling are included in the electronic
basis. These states are the ones that are nearly degenerate and
for which the energy difference factors in eq 178 have the largest
magnitudes.

The effort required for all 3Natom components x of the
nonadiabatic coupling vector for MRCI wave functions is almost
exactly the same as that required for the computation of a single
energy gradient vector, which in turn is typically only a small
fraction of the effort required for the energy and wave function
optimization steps. Thus, for all practical purposes, if the wave
functions and energies can be optimized for the states of interest,
then the energy gradient vectors and the nonadiabatic coupling
vectors can also be computed.

2.7. Relativistic Effects and Spin-Orbit Interaction
The accurate quantum-chemical treatment of molecules con-

taining heavy atoms must account for relativistic effects to
describe their properties. See, e.g., refs 470�472 for a general
discussion of relativistic effects. Relativistic electrons whose
energy is a sizable fraction of the rest mass (mec

2) will have less
kinetic energy than their nonrelativistic counterparts (p2/2me).
Thus, the strong Coulomb interaction with the nuclei results in a
contraction of the (nonrelativistic) orbitals close to the nuclei,
which primarily affects the s and p orbitals, and, to lesser extent,
the higher angular momentum orbitals. The more efficient
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screening of the nuclear charge due to the contraction of the core
orbitals typically causes the outer valence d and f orbitals to
expand.

Spin-orbit coupling lifts the degeneracy of atomic orbitals
belonging to the same l quantum number, thereby splitting the
energy levels of the nonrelativistic atomic states. This introduces
irregularities of the atomic properties in the periodic table. A
good example is the anomalies of gold.473 Especially for atoms
with a multitude of low-lying (degenerate and quasidegenerate)
electronic states such as actinides, spin-orbit coupling results in
a high density of states in the vicinity of the electronic ground
state. In fact, due to the coupling between electron correlation
and relativistic effects, it is frequently difficult to unambiguously
assign the ground state on theoretical grounds as illustrated by
the dimers of actinides.474 Hence, the coupling of electron-
correlation and relativistic effects is in general best described
using multireference methods. Since spin-orbit splitting may be
large in free atoms but is usually quenched in the molecule, bond
energies are strongly affected. The classical example is Tl2 where
spin-orbit coupling reduces the dissociation energy from 1.05 to
0.43 eV.475 The importance of relativistic effects for molecular
properties was pioneered by Pyykk€o and Desclaux476�478 and
subsequently explored by many research groups (see, e.g., refs
471, 479 480, and 566).
2.7.1. Relativistic Hamiltonians. The starting point for

almost all relativistic Hamiltonians for quantum chemistry is
the Dirac equation, the relativistic quantum mechanical descrip-
tion of a one-electron system in an external scalar potential V.
The Dirac equation with the Hamiltonian HD, shifted by�mec

2,
in position space representation is given by

HDΨ ¼ ðcα 3 p þ ðβ� 1Þmec
2 þ V �Ψ ¼ EΨ ð180Þ

The eigenfunctionΨ is a four-component vector containing two
“large” and two “small” components ΨL and ΨS, respectively.

Ψ ¼ ΨL

ΨS

 !
¼

ΨL
1

ΨL
2

ΨS
1

ΨS
2

0BBBB@
1CCCCA ð181Þ

The large and small components, respectively, originate from the
electronic and positronic degrees of freedom. In the nonrelati-
vistic limit cf∞ the small components vanish while the large
components correspond to the nonrelativistic wave functions for
α and β electron spin. p is the familiar momentum vector andα is
a three-dimensional vector. Together with β its components αx,
αy, and αz constitute the four Dirac matrices

αx ¼
0 0 0 þ1
0 0 þ1 0
0 þ1 0 0
þ 1 0 0 0

αy ¼
0 0 0 �i
0 0 þi 0
0 �i 0 0
þ i 0 0 0

0BBB@
1CCCA

1CCCA
0BBB@

ð182Þ

αz ¼
0 0 þ1 0
0 0 0 �1
þ1 0 0 0
0 �1 0 0

0BBB@
1CCCA β ¼

þ 1 0 0 0
0 þ1 0 0
0 0 �1 0
0 0 0 �1

0BBB@
1CCCA

ð183Þ

The spectrum of the Dirac equation contains a negative
(�∞,�2mec

2) and a positive (0,+∞) continuum of scattering
type solutions along with the discrete spectrum of eigenstates in
between. The off-diagonal term in eq 180, cα 3 p, introduces a
coupling between the small and the large components. ΨL and
ΨS are related to each other by the (exact) kinetic balance
condition.481,482 This causes the basis set of the small component
to be about twice the size of that for the large component. In the
physical vacuum the negative continuum is completely filled by
electrons while all other states are unoccupied.
There is no unique derivation of a molecular many-electron

analogue to the Dirac equation. Most commonly, the Dirac�
Coulomb, HDC, and the Dirac�Coulomb�Breit Hamiltonian,
HDCB, are used in practice, where the Breit term, derived by
perturbation theory within the framework of QED, is taken in the
frequency-independent form483�485 (in atomic units)

HDCB ¼ HDC � ∑
j > k

�
αj 3αk

2rjk
þ ðαj 3 rjkÞðαk 3 rjkÞ

2rjk3

	
ð185Þ

Within the algebraic approximation the presence of a negative
energy continuum results in the tendency of variational solutions
to “collapse”. This continuum dissolution problem is character-
istic for a Hamiltonian whose spectrum is not bounded from
below. With finite GTO basis set expansions, however, there is
not necessarily sufficient flexibility for the collapse into the
negative continuum to be observed. Yet lacking a bounded
Hamiltonian, computed energies and wave functions do not
necessarily correspond to the desired bounded fermion states.
To circumvent this problem, it is necessary to construct a basis
that distinguishes between positron and electron states. Thus,
the first step is the construction of a four-spinor basis by
computing the eigenvalues of a simplified independent particle
Hamiltonian H0 and classifying them into positronic and elec-
tronic spinors. This information can subsequently be used to
constrain the wave function optimization to the interaction of
electron states only, since positronic excitations and pair-creation
processes are usually of no interest. The no-pair Hamiltonian
depends on the choice of H0 used to define the four-spinor basis
because it is not invariant to rotations between positronic and
electronic spinors (vacuum polarization).
Within the fully relativistic four-component formalism, Dirac486

and Kramers restricted Dirac�Hartree�Fock SCF calculations
furnish the necessary four-spinor basis. As already mentioned,
the kinetic balance condition defines a relation between the basis
sets for the small and large components. While primitive basis
sets are best suited to ensure the kinetic balance condition,
contracted basis sets reduce the computational costs substan-
tially. Thus, to generate contracted basis sets, the atomic balance
procedure has been proposed.487 Here the contraction coeffi-
cients are derived from the spinor coefficients of atomic DHF
calculations with kinetically balanced primitive basis sets, thereby
assuming that core regions are not affected by bond formation.
To retain sufficient flexibility to describe the different radial
character of the l ( 1/2 spinors, the size of the contracted basis
essentially doubles. Similar to nonrelativistic Hartree�Fock, the
energy of a single determinant is minimized with respect to
rotations between occupied and virtual electron spinors plus the
constraint that the energy should be maximized for rotations
between electron and positron spinors.488 The formalism can be
extended to MCSCF.489 The optimized four-spinor bases are
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subsequently used for more accurate electron correlation treat-
ments. Due to the integration over four spinors, the computa-
tional resource and memory requirements are substantially
higher. There are 16 times as many complex two-electron
integrals compared to nonrelativistic calculations, in addition
to the need for large primitive basis sets for a sufficiently flexible
description of the relativistic wave function. Hence, much effort
has been devoted to develop a hierarchy of approximations to the
four-component DCB Hamiltonian.
Two-component approaches can be derived by removing the

small component of the four spinors. Elimination techniques
exploit the fact that, for electronic solutions, theΨS is suppressed
by a factor of 1/(2mec) with respect toΨ

L. Zero- and first-order
regular approximations490 (ZORA, FORA) and the method of
normalized elimination of the small component491 (NESC)
belong to this group of approaches.
Alternatively, transformation techniques aim at a unitary trans-

formation U of the Dirac Hamiltonian to block-diagonal form such
thatΨS andΨL (in an eigenspinor basis of HD) are decoupled

~H ¼ UHDU
† ¼

�
hþ 0
0 h�

�
ð186Þ

Ψ
~ ¼ UΨ ¼

� fΨLfΨS

�
ð187Þ

For electronic solutions,Ψ~ S = 0, the upper-left 2� 2 block (h+) only
is retained. The generalized Douglas�Kroll transforma-
tion492 employs a sequence of unitary transformations successively
eliminating the off-diagonal 2 � 2 block in orders of the external
potential.

~H ¼ :::U2U1U0HDU
†
0U

†
1U

†
2 ::: ¼ ∑

∞

k¼ 0
Vk ð188Þ

¼ ∑
∞

k¼ 0

�
V sf
kþ þ V sd

kþ 0
0 V sf

k� þ V sd
k�

�
ð189Þ

The Douglas�Kroll method yields variationally stable, well-
defined expressions and allows for systematic improvement of
the approximation.493 ~H is well-defined only in momentum
space, and the operators contain only even powers of momen-
tum. The (scalar) DKH approximation is applied to the one-
electron operators only, with spin-dependent terms Vk+

sd dis-
carded. Most conveniently, the modified kinetic energy and
electron�nuclear attraction integrals are evaluated in the basis
of the eigenvalues of the kinetic energy matrix and subsequently
transformed to position space.492 In an incomplete basis, this
amounts to an additional approximation. From the computa-
tional point of view, this method is very attractive, as it combines
well with the entire existing machinery of nonrelativistic quan-
tum chemistry. Restricting the scalar DKH transformation to the
one-electron part neglects a renormalized two-electron Darwin
term for which the integrals should be small.491

The Breit�Pauli Hamiltonian484 incorporates spin-orbit cou-
pling in the reduced basis of the large component, and the spin-
orbit component is given by

HBPSO ¼ 1
α2

�
∑
jA

ZA

rjA3
ðlj 3 sjÞ

	
� ∑

j 6¼ k

1
rjk3

ðrjk � pjÞ 3 ðsj þ 2skÞ

ð190Þ

¼ 1
α2

�
∑
jA

ZA

rjA3
ðlj 3 sjÞ

	
� ∑

j 6¼ k

1
rjk3

ljk 3 ðsj þ 2skÞ ð191Þ

¼ ∑
j
HSOðjÞ þ ∑

jk
HSOOðj; kÞ ð192Þ

where α is the fine-structure constant. The first term is the spin-
orbit interaction, while the second term is denoted the spin-
other-orbit interaction. Including the Breit interaction in the
DKH transformation up to second order in V, a relativistically
corrected no-pair Hamiltonian can be derived whose spin-
dependent part is of the same form as HBPSO amended by
kinematic bracketing factors.494 The nonvanishing matrix ele-
ments of the spin-orbit operator for a spin-orbital excitation are
given by

HSO
ja ¼ Æjjð1ÞjHSOjjað1Þæ

þ 1
2 ∑k

nk½Æjjð1Þ jkð2ÞjHSOOð1, 2Þjjað1Þ jkð2Þæ

� Æjjð1Þ jkð2ÞjHSOOð1, 2Þjjkð1Þ jað2Þæ
� Æjkð1Þ jjð2ÞjHSOOð1, 2Þjjað1Þ jkð2Þæ� ð193Þ

where nk denotes the occupancy of orbital k. To reduce the
computational effort, the two-electron part contributes through
fixed predefined average atomic densities, and, due to the short-
range property of the spin-orbit two-electron operator, only
one-center terms are retained.495 More recently, also the one-
electron integrals are restricted to one-center integrals.496 The
dependence on the choice of the atomic densities and the neglect
of the multicenter spin-orbit integrals appears to be small.
In the above, all-electron approximations to the fully relativis-

tic treatment have been discussed. Further reduction of the
computational effort and the complexity of the approach can
be achieved by use of effective valence electron Hamiltonians
which include relativistic effects solely by means of suitably
parametrized core potentials. Both one- and two-component
effective core potentials (ECPs) use a nonrelativistic model
Hamiltonian, and relativistic contributions arise solely from the
parametrization of the core�valence potential.
The ab initio model potential (AIMP) method497 aims at

reproducing atomic frozen-core calculations by replacing the
Fock operator of a valence electron in the field of the core
electrons

Z0

rj
þ ∑

c
2Jcorec ðjÞ

" #
� ∑

core

c
KcðjÞ ¼ VcðjÞ þ VxðjÞ ð194Þ

by a local expansion for the Coulomb part

VcðjÞ≈ 1
rj
∑
k
Ake

�αkrj2 ð195Þ

where the atom-specific parameters {αk, Ak} are adjusted in the
least-squares sense to the all-electron Coulomb potential. A
spectral representation is used for the exchange contribution

KcðjÞ≈ ∑
pq

jχpðjÞæApqÆχqðjÞj ð196Þ

Due to the short-range property of Vx a moderate basis { χ} should
suffice and the one-center approximation is expected to be good.
To prevent the valence orbitals from collapsing into the core
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region, the operator P(j) = �∑c
core 2εc|jc(j)æÆjc(j)| shifts the

core orbitals well above the valence orbitals to retain (approximate)
orthogonality of the core and valence orbitals. The molecular AIMP
Hamiltonian is defined by superposition of the atomic AIMP
Hamiltonians plus the core�core repulsion approximated as point�
charge interactions.

HAIMP ¼ ∑
nv

j
� 1
2
∇j

2 þ VcðjÞ þ VxðjÞ þ PcðjÞ
� 	

þ ∑
nv

j > k

1
rjk

þ ∑
A > B

Z0
ΑZ

0
Β

RAB
ð197Þ

Keeping the AIMP parameters fixed, the valence basis can now be
optimized in the standard procedure. The molecular Hamiltonian
neglects many-center core�valence exchange, while retaining
the nodal structure of the valence orbitals, provided the valence
basis set contains also sufficiently steep core functions. This
makes AIMP calculations more expensive, while opening the
possibility to explicitly include relativistic effects for the valence
electrons in the framework of the DKH no-pair Hamiltonian498

by use of the DKH transformed kinetic energy and electron�
nuclear attraction integrals. This may be extended to spin-orbit
coupling within the framework of the AMFI approach.499 For
computational reasons, using the smaller scalar relativistic ECPs
in combination with AMFI for spin-orbit interaction is attractive.
A simple procedure based on the equivalence of AMFI integrals
from all-electron and ECP calculations using suitably matched
basis sets has been proposed.500,501

The model core potential (MCP) method502,503 differs from
the AIMP approach by omitting the spectral representation of
the exchange operator Vx and by expanding the local potential Vc

in terms of radial Gaussian functions. The parametrization of Vc

also implicitly includes the exchange term. Since MCPs share the
same basic features of AIMPs, scalar-relativistic contributions
and spin-orbit coupling have been recently incorporated in a
spirit similar to the afore-mentionened AMFI approach.504

Promising results for hydrides and cationic dimers for p-block
elements up to Rn at the SO complete active space CI (SO-
CASCI)505 and the SO multiconfigurational quasidegenerate
perturbation theory (SO-MCQDPT)506 level of theory have
been reported.504,507

An alternative form of an effective valence-electron Hamiltonian
is the use of pseudopotentials, where the atomic Hamiltonian is
given by

H ¼ � 1
2 ∑j

∇j
2 þ ∑

j
VPPðrjÞ þ ∑

j > k

1
rjk

ð198Þ

VPPðrÞ ¼ � Z0

r
þ ∑

ljk
Bklje

�βkljr
2
Plj ¼ V av

PP þ V SO
PP ð199Þ

Plj ¼ ∑
j

m¼ � j
jljmæÆljmj ð200Þ

The kinetic energy and electron�electron interaction are non-
relativistic; i.e., all relativistic effects are included in the pseudopo-
tential. The long-range behavior is determined by the core charge;
the short-range behavior is modeled in a semilocal ansatz with the
projection operator Plj inducing different radial potentials for
different j = l ( 1/2.
Scalar relativistic effects are approximated by the j-averaged

potential VPP
av while the spin-orbit part is the difference from the

averaged potential. Both are usually expanded in Gaussians.

V av
PPðrÞ ¼ Z

r
þ ∑

lk

�
l

2l þ 1
Bkl;l � 1=2e

ð � βkl;l � 1=2r
2Þ

þ l þ 1
2l þ 1

Bkl;l þ 1=2e
ð � βkl;l þ 1=2r

2Þ
	
Pl ð201Þ

V SO
PP ðrÞ ¼ ∑

lk

2
2l þ 1

½Bkl;l þ 1=2e
ð � βkl;l þ 1=2r

2Þ � Bkl;l � 1=2e
ð � βkl;l � 1=2r

2Þ�Pll 3 sPl

ð202Þ
Shape-consistent pseudopotentials508,509 replace the valence
orbitals of the relativistic all-electron calculation by nodeless
pseudoorbitals which retain the shape of the valence orbital
beyond a matching radius rc separating spatially the valence and
core region, while inside this radius the pseudoorbital is de-
scribed by a smooth nodeless polynomial expansion. The
pseudopotential and basis set to describe the pseudoorbitals
are tightly coupled. Ambiguities arise from the choice of the
reference data. Some of the popular sets include the following: (i)
Christiansen and co-workers510�519 generated shape-consistent
pseudopotentials including spin-orbit potentials derived from
DCHF all-electron calculations; (ii) Hay and Wadt520�524

derived another popular set based on scalar-relativistic Cowan�
Griffin all-electron calculations; (iii) Stevens and co-workers525�527

compiled a more compact representation also based on DCHF all-
electron calculations.
Energy-consistent pseudopotentials528�530

fit the adjustable
parameters on the basis of least-squares deviations of atomic
energy levels with respect to relativistic all-electron calculations.
This approach has the advantage that it does not rely on
reproducing quantities in the one-particle picture, and the
formalism can be used to generate pseudopotentials at any level
of relativity approximation. Given that the optimization of the
pseudopotential parameters is carried out close to the basis set
limit or using accurate numerical atomic calculations, the sub-
sequent basis set optimization with fixed parameters is straight-
forward. Parameters and corresponding valence basis sets are
available for almost all elements in the periodic table both for
small and large cores.528,529,531�546

2.7.2. Relativistic Implementations. Currently, not only
are nonrelativistic methods in quantum chemistry much more
developed than their two- and four-component relativistic coun-
terparts, but they are also computationally much less expensive.
This is to some extent related to requirements for the construc-
tion of the one- and many-particle basis, but it is also apparent
that the underlying machinery is quite different when comparing
relativistic and nonrelativistic methods. Since this is closely
related to the different symmetry properties of the spin-orbit
term in the following paragraph, specific features are discussed in
order to clarify the more detailed comparison of the various
implementations.
Although the Hamiltonian is scalar and thus rotationally

invariant, the spin-orbit coupling term contains the scalar
product of two vector operators. While nonrelativistic and scalar
relativistic Hamiltonians preserve the symmetry of space and
spin coordinates separately, the l 3 s term commutes only with
symmetry operations applied simultaneously to both spatial and
spin coordinates. Thus the symmetry properties are no longer
described by the regular (single) point groups. To account for
spin 1/2 transformation properties, the double groups are
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introduced. Half-integer spin functions transform according to
theD1/2 irrep of the full rotation group such that a rotation by 2π
leads to a sign change while a 4π rotation is the unit operation.
The double group may be derived from the regular (single)
group by adding the extra symmetry element ~E representing a
rotation by 2π. Thus the number of symmetry operations is
doubled, and in addition to the regular (bosonic, even number of
electrons) irreps describing the transformation properties of
integer angular momentum functions, fermionic (odd number
of electrons) irreps describe the transformation properties of
half-integer angular momentum functions.547,548

In the absence of an external magnetic field, the Hamiltonian
also commutes with the time-reversal symmetry operator
(Kramers operator). By virtue of Kramers theorem, wave func-
tions with integer spin momentum may be chosen to be real.
Half-integer (fermion) functions, however, are 2-fold degenerate.549

The degenerate components are related by Kramers operator (K)
forming a Kramers pair (ϕ, ϕ̅).

Kϕ ¼ ϕ; K2ϕ ¼ � ϕ ð203Þ

The group-theoretical properties of theKramers pairs are connected
to the structure of the fermionic irreps of the double group. For the
odd-electron case, three different cases are distinguished depending
upon the transformation properties of the Kramers pair functions:
(i) in real groups they span the basis of a two-dimensional fermion
irrep (e.g., D*2h, C *2v, D*2); (ii) in complex groups the components
transform as two different fermion irreps (C *2h, C *s, C *2); (iii) in
quaternionic groups the components transform as the same one-
dimensional irrep (C *1, C *i). Thus, given a hermitian one-electron
operator h symmetric under time-reversal and spatial symmetry, in a
Kramers basis the off-diagonal block hpq vanishes for real and
complex groups, whereas a quaternionic transformation is necessary
to have case iii block diagonal. For real groups, the Hamiltonian and
the wave functionmay be chosen to be real,550�552 whereas they are
complex in cases ii and iii. Thus time-reversal symmetry may be
exploited reducing the overall effort, as well as to classify the algebra
(real, complex, quaternionic) in the general case. Hence, to
incorporate double group and time-reversal symmetry, one may
work in a Kramers basis of one-electron spinors and rewrite the
Hamiltonian in terms of Kramers single- and double-replacement
operators.489 This results already in a considerable reduction in the
number of two-electron integrals. This carries over to the classifica-
tion of determinants according to the number of occupied Kramers
pair functions,N(p) andN(p), and theprojectionMk = (

1/2)(N(p)�
N(p)). The Hamiltonian matrix in a basis of these determinants
displays a block structure due to the selection rule HIJ = 0 for
|ΔMk| = |MI

k � MJ
k| > 2 and the algebraic classification (real,

complex, and quaternionic).527Within this formalism, the nature
of the spin function in the one-electron spinor is not restricted to
either α or β spin but is a general linear combination thereof.
Since the spin-orbit term couples determinants of different spin
projections Mk, the underlying configuration space is usually
limited to some maximum range of |Mk �Mk0| with respect to a
reference value Mk0 (see also ref 553).
An alternative procedure sets out with nonrelativistic spin- and

spatial-symmetry-adapted many-electron functions, i.e., the un-
ion of all (2S + 1) degenerate components for multiple spin
multiplicities of all spatial symmetry irreps (|j;S,M,Γæ). The
nonrelativistic Hamiltonian matrix is block diagonal with respect
to S, M, and Γ (cf. eqs 10 and 11). Adding (effective) one-
electron spin-orbit coupling terms introduces off-diagonal blocks

in the Hamiltonian matrix since nonzero matrix elements occur
for |ΔS|e 1 and |ΔM|e 1, so that the Hamiltonian matrix has a
complicated block structure.549 The matrix elements of the
spin-orbit coupling term can be evaluated by means of the
Wigner-Eckart theorem, reducing the overall effort. How-
ever, this technique is limited to real orbitals, and in general
the Hamiltonian matrix is complex, although the above group
theoretical restrictions and simplifications apply.
Spin-orbit coupling affects the selection of the one-electron

basis. A large difference between the radii Ær2æ of the pairs of
spinors l ( 1/2 from DHF calculations554 suggests the need for
an optimized two-spinor basis. Main group elements primarily
fall into this category, while transition metals, lanthanides, and
actinides may well work with a scalar-relativistically optimized
(real) MO basis. Otherwise, an inadequate MO basis must be
compensated for by a largerN-electron basis, i.e., including single
excitations to (highly) excited states, in order to account for spin
polarization of the average orbitals toward the l ( 1/2 spinors.
On the basis of experienceswith two-componentKramers-restricted
HF calculations using spin-orbit pseudopotentials to generate the
j-specific spinors for subsequent two-component electron correla-
tion calculations, it has been argued that the configuration space
expansion is more compact and converges more rapidly.555

2.7.3. Scalar Relativistic Effects. In this section, some
general aspects related to the extension of existing nonrelativistic
MCSCF and MRCI methods to approximate two-component
relativistic calculations are discussed.
Scalar relativistic effects approximated in terms of pseudopo-

tentials, AIMPs, or using the DKH-no-pair Hamiltonians are
completely transparent to any conventional MCSCF or MRCI
code since only the one-electron integrals are affected. Separa-
tion of spatial and spin coordinates, and thus the related
symmetry considerations, are unchanged as compared to non-
relativistic calculations. Whereas effective valence electron ap-
proaches (pseudopotentials, AIMPs) rely on the proper choice of
the core region and the parametrization, all-electron treatments
are free of these limitations. TheDKH-based description of scalar
relativistic effects requires basis sets capable of describing the
core region, which leads to increased computational costs.
Similar considerations apply to the AIMPs, as the nodal structure
of the valence orbitals in the core region must be adequately
reproduced. All-electron calculations can be systematically im-
proved, a feature that does not apply to pseudopotential
approaches, even with multiple parametrizations for different
core sizes, since the transferability to the molecular case can be
limited. Given the cost/accuracy ratio, pseudopotentials and, to
lesser extent, AIMPs are very efficient.
2.7.4. Two-Component Extensions of MRCI. There are

some technical and conceptual obstacles to incorporate spin-
orbit coupling into traditional MRCI codes while retaining the
simplifications due to the use of one-component (real) orbitals.
This is equivalent to a Kramers basis with collinear spin (α or β).
For any direct-CI method, it is important to evaluate the
Hamiltonian matrix elements very efficiently on-the-fly, so that
spin-averaged, real, molecular orbitals, a real Hamiltonian, and
the use of existing nonrelativisticmachinery for the compute-intense
matrix�vector product formation are all important assets.
The evaluation of the spin-orbit matrix elements is split into

the product of an orbital-dependent contribution and a spin-
dependent contribution evaluated on-the-fly using partially tabu-
lated data. The one-electron integrals have been implemented
for more than 2 decades.556 The rather numerous two-electron
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spin-orbit integrals (with different symmetry properties) are
either completely neglected with pseudopotentials or approxi-
mated within an effective one-electron operator (AMFI approxi-
mation495). However, in a real spin-adapted or determinant basis,
the spin-orbit matrix elements are imaginary.
The dimension of the configuration space including spin-

orbit coupling may be an order of magnitude larger than for
the nonrelativistic counterpart. Since the efficient evaluation of
Hamiltonian matrix elements is closely tied to the enumeration of
the many-electron basis, the seamless integration of this superset
into the enumeration scheme is quite important. GUGA-based
implementations, for example, employ a multiheaded Shavitt graph
in which each head represents a separate spin multiplicity.557 Both
CSF- and determinant-based expansions need to deal with multiple
M values and spatial symmetries. To gain insight into the structure
of the determinant space, graphical representations are helpful.29

For a complex Hermitian matrix H = P + iQ, where P and Q
are real-symmetric and skew-symmetric matrices, respectively,
the corresponding eigenvalue equation is Hz = zE for real E and
complex z = u + iv for real components u and v. If z is an
eigenvector, then eiθz = (cos(θ)u � sin(θ)v) + i(sin(θ)u +
cos(θ)v) is also an eigenvector for arbitrary phase θ. Thus the
splitting between the real and imaginary components is some-
what arbitrary, and θ may be chosen freely to simplify the wave
function analysis (e.g., to minimize the complex component
norm or to maximize the component overlaps with some
reference vector). The complex eigenvalue equation of dimen-
sion m may be expanded as

H0 u
v

 !
¼ P �Q

Q P

 !
u
v

 !
¼ u

v

 !
E ð204Þ

whereH0 is real symmetric with dimension 2m. The vector
��v

u

�
is also an eigenvector of H0 with the same eigenvalue E. In
general, each of the eigenvalues of the complex H are
replicated558 in the eigenvalue spectrum of the expanded H0.
An arbitrary plane rotation of the two degenerate eigenvectors is

also an eigenvector, cos(θ)
� u
v

�
+ sin(θ)

��v
u

�
, which is seen to

be simply another expression for the arbitrary complex phase of
the original complex eigenvector. Thus, for the pair of degenerate
eigenvectors of the expandedH0, there exists only a single linearly
independent complex eigenvector z. For small dimensionsm, the
choice between these two representations is rather arbitrary, but
for larger dimensions in which a direct diagonalization is used,
the complex representation is about a factor of 2 more efficient
(∼(4m3) operations for H compared to ∼(2m)3 operations for
H0) in addition to the larger storage requirements for the
expanded H0. For iterative subspace methods for only a few
eigenpairs, the computational effort is comparable for the two
approaches. The complex Hermitian generalization of the Da-
vidson subspace method is straightforward. In the expanded
representation, the matrix�vector products Pu, Pv, Qu, and Qv
are required within each iteration for trial vector components u
and v. These vectors can then be combined to increase the
subspace dimension by two each iteration, equivalent to adding

both expansion terms
� u
v

�
and

��v
u

�
; this requires no sub-

stantial additional effort, and the resulting subspace Hamiltonian
has replicated Ritz values, mimicking the true eigenvalue spec-
trum of the expanded form H0. In the case of additional
degeneracies, e.g., the Π states in linear molecules, the four

associated eigenvectors of the expanded H0 may mix arbitrarily,
and when combined into complex form, only two linearly
independent complex z vectors can be constructed. The choice
of representation of these two orthogonal complex eigenvectors
can affect the continuity of the wave function representation and
the computation of transition properties.565

The complex matrix H of dimension m can take a partitioned

formH =

�
A �iCT

iC B

�
for real symmetric square A and B and

for arbitrary real rectangular C. In this situation, a unitary
transformation of the form HrU†HU with U = diag(1,i1) will

result in a real, symmetric H =

�
A CT

C B

�
of dimension m that

has the same eigenvalues as the original matrix. The eigenpairs
may be determined with a real symmetric diagonalization in the
straightforward way without complications due to replicated eigenva-
lues. The eigenvectors in the original basis representation are given by
U†c. This property can generalize to certain matrices with multiple
partitions. By using symmetry arguments, it can be shown559 for the
real groups (D*2h, C *2v, D*2) in a double-group adapted many-electron
basis either that the complexHamiltonianmatrix can be brought to this
real formor alternatively that thephases of themany-electronbasismay
be modified in order to make the corresponding Hamiltonian
representation real. All computations may then be done with real
arithmetic only. This applies to both even and odd electron cases, as
expected for real groups from the discussion above. For even electrons,
it can be shown that the spin functions in terms of real spherical tensors
(linear combinations of |k;S,Mæ and |k;S,�Mæ) form a symmetry-
adapted basis for the double group, and, with the appropriate phase
convention, all nonvanishing spin-orbit coupling matrix elements are
real.557 The odd-electron case can be adapted to the even-electron
formalism by formally adding an additional, fictitious, noninteracting
electron; this results in a doubling of the dimension of theHamiltonian
matrix, and in replicating the eigenvalues, since for complex and
quaternionic groups the Hamiltonian is generally complex.
When dealing with highly degenerate open-shell cases such as

actinides and lanthanide compounds, the sheer size of the
potential configuration space raises the fundamental question,
to what extent it is admissible to approximately decouple electron
correlation and spin-orbit coupling effects in order to reduce the
computational effort? Due to the substantially reduced com-
plexity, as well as computational effort, two-step approaches have
been popular from the very beginning.560 The simplest approach
amounts to computing a range of electronic states of different
spin multiplicity or spatial symmetry including scalar relativistic
effects.
There are two types of general approaches based upon

modifications of the nonrelativistic MRCI procedure, (i) the simulta-
neous treatment of electron correlation and spin-orbit coupling on the
same footing (one-step procedure) and (ii) the model space or
effective Hamiltonian approach (two-step procedure). Treating spin-
orbit coupling and electron correlation on the same footing, the one-
step approach, is thus quite expensive and requires highly efficient
programs.There are threemajor codes capable of such calculations. (i)
The conventional CIDBG code by Pitzer and co-workers556,559,561,562

which supports double groups is, due to the storage requirements for
the CI matrix elements, limited to ∼105 CSFs when used in
combination with spin-orbit pseudopotentials; closely related is a
variant of this approach using an additional configuration selec-
tion scheme (selected intermediate coupling CI).563,564 (ii)
The GUGA-based direct-CI code supporting double groups
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by Yabushita et al.,557 the parallel version of this code,118 is
capable of dealing with CSF expansions up to ∼109. (iii) The
individually selected direct-CI code SPOCK.CI565 which uses a
basis of spin-adapted CSFs without double group support but
optionally in combination with the DFT/MRCI method.642 In
this last (empirical) method, dynamical electron correlation (and
size-extensivity) is approximately accounted for by DFT while
MRCI is responsible for static electron correlation. DFT MOs
furnish the one-electron basis. To avoid double counting of
electron correlation, the off-diagonal CI matrix elements are
scaled by an empirical energy-dependent term while the diagonal
elements are modified by Kohn�Sham matrix elements. The
selection of near-degenerate configurations relies on an energy
gap criterion. The DFT/MRCI Hamiltonian combination works
very well with an individually selected CI code because individual
Hamiltonian matrix elements may be easily modified in the
direct-CI scheme, and there is an immediate computational gain
with the substantial reduction of the MRCI expansion dimen-
sion. The parallel version of this method, however, seems to be
not well parallelizable and, due to randommemory access, suffers
from cachemisses.641 A priori selected CI codes are not generally
suitable because they define a particular expansion form for the
wave function and exploit this to efficiently compute the CI
matrix elements on-the-fly. Since the contributions of individual
integrals are additive, CI matrix elements are constructed in-
crementally to exploit vectorization and retain only a minimum
of logic. For example, the GUGA-based MR-CISD implementa-
tion in COLUMBUS can utilize DFT/MRCI efficiently, only if
the entire CSF space is defined within the internal orbital space.
Although this is a natural choice, the size of the internal orbital
space may be large and some structural selection scheme must be
devised to avoid the exponential scaling of the underlying full-CI
space. Thus, the large combined CI space dimension in one-step
spin-orbit CI is reduced, and calculations including spin-orbit
coupling on larger molecules are possible.
For individually selected MRCI codes, the automated selec-

tion of configurations for variational treatment is critical in the
case of spin-orbit CI because the usual selection criteria based on
perturbation theory estimates of the correlation energy contribu-
tions would leave out the important single excitations because,
due to Brillouin’s theorem, their contribution to the correlation
energy is insignificant. However, many of these single excitations
are indispensable in order to compensate for the choice of spin-
averaged real molecular orbitals which are biased as compared to
the respective optimized two-component spinors. These single
excitations allow for orbital relaxation effects relative to the
spin-averaged MO basis. Thus, all singles, or a major subset of
all singles, with respect to the already selected CSF space (e.g.,
by symmetry criteria or perturbation theory estimates) must be
added in order to obtain reliable zero-field splitting. Although
SPOCK.CI simultaneously treats electron correlation and
spin-orbit coupling on the same footing, the initial contracted,
effective, complex Hamiltonian is set up and diagonalized.
This serves to select the CSF space, to generate starting vectors
for the final, fully coupled, MR-SOCI step, and to obtain a
quasidegenerate perturbation theory (QDPT) estimate of
the spin-orbit effects (equivalent to the two-step approaches
below).
Two-step approaches are characterized by some separation of

spin-orbit coupling and electron correlation effects. Among
the simplest approaches is to compute various |ψk;S,Mæ and to
evaluate spin-orbit coupling by first- and second-order perturbation

theory from the spin-orbit coupling matrix elements between
pairs of these electronic states.566 The set {|ψk;S,Mæ} may also
include the spatial and spin-degenerate components of the scalar-
relativistic electronic wave functions. Thus, this may be described
as a two-step approach using contracted (scalar-relativistic)
wave functions while ignoring any relaxation due to spin-orbit
coupling.
An improved approach employs QDPT:26 a model Hamiltonian

in the contracted basis (of up to a few hundred) {|ψk;S,Mæ} is
constructed, all off-diagonal spin-orbital coupling matrix ele-
ments Æψj;S,M|HSO|ψk;S0,M0æ are evaluated, and this small,
complex-hermitian, model Hamiltonian is diagonalized. The
major limitation of this approach is that spin-orbit coupling
allows for relaxation of the wave functions only within the small
model space. Since an effective Hamiltonian is constructed, this
allows for further variations. The SO-RASPT2 approach475,567

assumes the separability of dynamical and static correlation; the
contracted basis {|ψk;S,Mæ} is computed at the RASSCF level of
theory, and the off-diagonal spin-orbit matrix elements are
computed within the AMFI approximation. The matrix elements
of the model Hamiltonian are shifted to account for state-specific
dynamic electron correlation effects (e.g., derived from scalar-
relativistic CASPT2 or MRCI calculations), and the eigen-
values and eigenvectors are computed. The implementations of
SO-CASCI505 and SO-MCQDPT506 limited to CAS reference
spaces follow a similar strategy.
Individually selected MRCI codes typically suffer from inher-

ent inefficiencies in evaluating the Hamiltonian matrix elements
on-the-fly. They primarily gain from a drastic reduction of the
size of the variationally treated configuration space; a posteriori
perturbational corrections for the contributions of the omitted
configurations are indispensable. In a contracted variant, initially
the individual states {|ψk;S,Mæ} are computed with a large CSF
expansion space, supplying the diagonal elements of the model
Hamiltonian. The contracted {|ψk;S,Mæ} states are projected
onto a reduced basis of determinants {|ψk;S,Mæ}red. which still
gives a qualitatively correct description of the {|ψk;S,Mæ} while
offering a more economical basis to evaluate the off-diagonal
elements Æψj;S,M|HSO|ψk;S0,M0æred. of the model Hamiltonian.
The small complex model Hamiltonian is diagonalized.568 Simi-
lar two-step effective Hamiltonian approaches have been pro-
posed by Hess et al.,560 Rakowitz and Marian,569 and Buenker
et al.570 As before, orbital relaxation due to spin-orbit interaction
(spin-polarization) is difficult to account for in a contracted
approach. This problem is addressed in the EPCISO method.571

Here the model Hamiltonian is computed from the uncontracted
reduced determinant basis, enhanced by singly excited determi-
nants to incorporate spin-polarization, and includes corrections
for electron correlation effects of the individual {|ψk;S,Mæ} states
in the large basis. The size of the full complexmodel Hamiltonian
is limited to ∼105 with conventional CI methodology. Hence,
this approach is fairly closely related to the SPOCK.CI imple-
mentation but considerably more restricted in terms of config-
uration spaces.
Another two-step approach has been proposed by DiLabio.564

Electron correlation effects for the multiple {|ψk;S,Mæ} states are
computed in extended scalar-relativistic MR-CISD calculations.
The spin-orbit splitting (ESO) is estimated from the energy
difference between the scalar-relativistic and two-component
MR-CIS calculations; i.e., the configuration space includes static
electron correlation plus spin-polarization effects using a version
of COLUMBUS CIDBG with configuration selection.563
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2.7.5. Two- and Four-Component MCSCF and MRCI.
The relativistic MOLFDIR/DIRRCI program package572 sup-
ports open-shell DHF calculations for the optimization and
selection of the molecular spinor basis for subsequent CI
calculations. Double-group and time-reversal symmetry is sup-
ported. The direct-CI code operates in a determinant basis
following a generalization of the RASSCF approach370 and using
a (multiheaded)29 graphical representation of the CI space. An
improved version of the DIRRCI code is part of the DIRAC10
program package.573

The two- and four-component relativistic direct-CI code
LUCIAREL574�576,635, employs the DKH transformation for
the one-electron integrals in combination with the AMFI
approximation using a Kramers-pair spinor basis. It was pointed
out that the DKH-transformed two-electron integrals lead only
to minor corrections of the total energies of the Ag and Au
atoms.494 Both collinear and noncollinear spin functions are
supported, though the latter requires on optimized two- or four-
component spinor basis optimized at the SO-MCSCF level of
theory with, in general, complex orbitals. Since the AMFI
approximation includes an approximate treatment of the Breit
term, this kind of relativistic approach might be considered
superior to four-component Dirac�Coulomb CI calculations.
Abelian and quaternionic double groups (C *1, C *i, C *2, C *s, C *2h)
are supported with work toward the subgroups of D*2h in
progress. Many implementations of two- and four-component
MRCI codes are limited to real double groups or cannot
necessarily exploit double group and time-reversal symmetry.
GAS-type configuration spaces (multiple orbital subspaces with
individual minimum and maximum occupation number con-
straints) are supported. Because this code is initially based on a
nonrelativistic full-CI implementation using a string-based de-
terminant formalism, there are no hard excitation-level limits.
Since the structure of the Hamiltonian does not change, the code
supports both two- and four-component calculations provided
the appropriate integrals are available. A parallel version has been
implemented, and calculations on the BiH ground state with up
to 428 million determinants showed modest scaling for 32 Linux
quad-core nodes with a 1 Gb/s ethernet network.
For heavy elements, in particular actinides and lanthanides, the

near degeneracy of s, p, d, and f shells, already apparent with
nonrelativistic and scalar-relativistic treatments, suggests the
need for a multiconfigurational orbital optimization incorporat-
ing static electron correlation effects. Including spin-orbit
coupling, the splitting of otherwise degenerate states increases
the density of low-lying electronic states so that a relativistic
MCSCF treatment appears even more important. Atomic
MCSCF calculations show that orbital optimizations with static
electron correlation only must include spin-orbit coupling in
order to arrive at reasonable spin-orbit splitting. From two-
component MRCI calculations, it is well-known that spin-
polarization must be accounted for with a spin-averaged orbital
basis; in fact with individually selected CI the necessary single
excitations may constitute the major part of the CSF space.
Hence, more compact relativistic CI expansions may be expected
from relativistic MCSCF orbital optimization. A rather general
formalism for two- and four-component molecular MCSCF,
based on one-electron spinors in the Kramers-pair basis, has
been proposed by Jensen et al.489 and Fleig et al.577 and has
been recently implemented.578 Another somewhat less general
two-component MCSCF implementation, based on spin-orbit
pseudopotentials, has been reported by Kim and Lee579

2.8. Parallel Computing
Quantum chemistry has historically been one of the leading

fields in the use of parallel computing.580�582 In view of the
resource demands of many MCSCF and MRCI implementa-
tions, both in terms of CPU time and memory consumption, it is
reasonable to efficiently exploit the inherent potential of today’s
computational resources. However, the performance available
from state-of-the-art computer systems is almost exclusively due
to massively parallel execution. Current supercomputer hard-
ware offers PFLOP/s (1015 floating point operations per second)
peak performance to those who manage to exploit it. Until
recently, PFLOP/s computer systems relied on an increasingly
larger number of compute nodes (g104). Graphical processor
units (GPUs) and accelerator cards are emerging as tools for
computational science. These use hardware-accelerated densely
integrated parallelization and vectorization to achieve peak
performance in the TFLOP/s (1012 floating point operations
per second) range at significantly lower cost and energy con-
sumption. High-end multicore CPUs, GPUs, and accelerator
devices are all currently available on the general market. Thus,
to take advantage of the tremendous computational power
available with current and upcoming hardware developments,
parallelization is essential. However, quantum chemists must
modify and adjust their algorithms to utilize this inherent
computational power.

The first part of this subsection gives a brief overview of
current parallel computer architectures by presenting some
details about the computational units, memory, and network
architecture. The next subsection sketches some general parallel
programming paradigms. The last subsection includes details of
parallel multireference methods (MCSCF and MRCI) and the
corresponding analytic energy derivatives.
2.8.1. Parallel Computer Architectures. Parallel computer

systems can be classified as distributed or shared memory
computers. While all CPUs in shared memory systems have
direct access to the same address space, distributed memory
systems need to exchange data between the nodes by explicit
message-passing through a communication network. Most mod-
ern parallel computers are a combination of shared and distrib-
uted memory architectures since each individual node hosts
multiple (multicore) CPUs sharing the same address space.
Currently GPUs and accelerator devices operate on dedicated
high-speed memory, physically separated from the main memory
of the compute node, and therefore they resemble the char-
acteristics of distributed memory systems with a high-speed
interconnect.
2.8.1.1. Computational Units. Current parallel computers

tend to be built from widely available standard components of
high-end personal computers (PCs), and, albeit equipped with
special hardware to connect to the communication network, the
technical development of the individual compute nodes parallels
those available with PCs to the general public. Supercomputer
systems combine a large number of processors with a high-speed
network and aim at massively parallel codes. Considerable effort,
both in terms of hardware and software maintenance, must be
invested to keep them fully operational. Standard parallel com-
puter clusters combine a smaller number of nodes, but for this
same reason are easier to operate, and they provide a powerful
general-purpose resource for many applications.
Initially vectorization (or pipelining) took advantage of per-

forming multiple identical instructions in several overlapping
stages, followed by CPUs supporting multiple instructions to
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begin executing each clock cycle (multiple issue), combined with
increasing clock speeds allowed for an increase in the serial
performance by about 4 orders of magnitude since 1980. Since
about 2005 the performance gain is almost exclusively due to
multicore CPUs; i.e., multiple general-purpose processors are
combined on a single chip. However this development does not
reduce the execution time of a serial code; it is only through
parallelization that performance gains are possible from the
hardware.
On GPUs, or accelerator cards, many more, albeit much

simpler, cores are combined on a single chip to provide a
tremendous performance (∼100�1000 GFLOP/s peak) for
the single-instruction multiple data (SIMD) mode. Recently
GPUs, initially developed to accelerate graphics operations, have
reached advanced levels of sophistication. Most importantly,
more user-friendly programming models and tools (e.g.,
CUDA,583 OpenCL584) for these devices have led to growing
popularity of GPU programming in a variety of scientific
disciplines. Accelerator devices (e.g., ClearSpeed e710585) along
with CSXL programming tools are fairly similar from the
application point of view. They are characterized by multiple
SIMD array processors that support tightly coupled vectorization
and parallelization combined with a very high internal memory
bandwidth (>150 GB/s) and are well-suited for data-parallel
applications.
2.8.1.2. Memory Architecture. Current computers have a

hierarchical memory structure with multiple data storage devices,
each with widely different characteristics.586 Registers, level 1
(L1), and level 2 (L2) cache operate at very high speed and are
private to each core. The L3 cache is substantially larger but
shared among all cores of a CPU. The next level in the hierarchy
is the computer’s main memory, which is usually shared. On a
node with multiple multicore CPUs, the access to the node’s
shared memory is not uniform, and the available memory
bandwidth may be optimized by preferentially accessing memory
banks physically close to the core. Access to remote memory on a
distributed-memory machine is slower by about 1�2 orders of
magnitude due to the use of the interconnect.
As a consequence of the ratio of FLOP rate to memory

bandwidth, the increasing number of cores residing on a single
node causes the observable performance to appear increasingly
memory bandwidth limited. The efficiency of the hardware-
controlled cache management is very sensitive to the memory
access pattern of the application.586 The compiler primarily
manages efficient register allocation, optimum order of instruc-
tions, and use of available features of the CPU. Hence, it is
important for the application code to avoid random access to vast
portions of the memory. Since paging may drastically deteriorate
performance, some supercomputer architectures, such as the
IBM BlueGene/P, do not permit the virtual memory space to
exceed the available real (physical) memory.
2.8.1.3. Network Architecture. The communication network

connects the nodes and consists of communication links and
switching elements connecting these links. It is characterized by
the network topology, bandwidth, and latency. The network
topology describes how the nodes are physically connected (e.g.,
ring, 2D mesh, 2D torus, 3D torus, or crossbar) and each
topology may display very different performance characteristics.
The performance of a network correlates with the maximum
number of hops required to pass amessage between two arbitrary
nodes in the network. The economical cost of a network rather
correlates with the number of switches and the number of links

per switch. Hence, a crossbar connecting all computing elements
with a single switch and a single hop would be perfect for
performance but economically and technically unfeasible for a
large parallel computer system. Thus, mesh and torus network
topologies are commonly encountered as compromises between
costs and performance. In addition, the time needed to pass a
message between two nodes is given by t = tlat + V/bw, that is, the
latency of the initial startup time (tlat) and the data volume (V)
divided by the bandwidth bw. For (nonfarming type) applica-
tions, remote data access is a major bottleneck, and efforts
devoted to optimize the algorithm should address the following:
(i) sending a few large messages instead of many small ones, (ii)
passing messages asynchronously to hide latency, (iii) passing
messages between nodes such as to fit the network topology and
to minimize the number of hops, and (iv) avoiding unnecessary
collective all-to-all data transfers.
2.8.1.4. File Systems and Disk I/O. The slowest, but also the

largest, medium on which to store data in routine parallel
computations is the hard disk. Even on the consumer market,
multi-TB hard disks are available at moderate prices. For
compute servers, it is not uncommon to have 10 TB file systems,
and supercomputer systems provide petabyte (PB) storage
systems. To avoid I/O contention, the accumulated I/O band-
width should ideally scale linearly with the number of compute
nodes. The simplest way to achieve this is by adding local RAID-
based file systems. The disadvantage of this is that the files are
only locally visible and thus primarily used for local scratch files.
In addition, with J104 hard disks distributed over the entire
machine, the overall mean time between failure (MTBF) may
cause machine instability and frequent data loss, which requires
additional considerations of fault tolerance and redundancy. The
alternative is a common parallel file system (e.g., PVFS,587

GPFS,588 and LUSTER589) which resides separately on a cluster
of dedicated file servers, with files visible to all compute nodes,
and hiding all the storage details. The maximum aggregate I/O
bandwidth is available only when the I/O characteristics of the
application match the performance characteristics of the parallel
file system. Special parallel I/O libraries (e.g., SIONlib590 and
MPI-I/O595) may be invoked by the application code to trans-
parently ensure optimum usage of the file system. Despite all
these advances in I/O technology, it should be kept in mind that
today’s compute nodes easily saturate the bandwidth of any file
system. To avoid dramatic deterioration of the I/O bandwidth,
the data access pattern is significant: while sequential (con-
tinuous) access to a data file allows the file system to efficiently
perform read/write operations (with either fixed or variable
record lengths), this may be impossible for random data access
patterns. For small files fitting completely into the available file
cache, usually no performance degradation occurs.
2.8.2. Parallel Programming Techniques. Parallelism

offers great opportunities to extend the range of feasible applica-
tions both in terms of the molecular system size and turnaround
time. Additionally, as already pointed out, parallelism is essential
in order to exploit modern computer architecture. The nature of
algorithms in quantum chemistry tends to be rather complex,
compute intensive, and frequently very data intensive. Parallel
algorithms add an additional layer of complexity and must be
sufficiently flexible to account for current and future hardware
developments. Using high-level tools to isolate the user code
from the details of the bookkeeping and hardware specifics is
recommended. The easiest way to approach parallelization is by
using community-supported open-source or vendor-supplied
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parallel libraries for major parts of the work (e.g., linear algebra,
sorting, and other common tasks). Libraries alone are frequently
not a sufficient solution because the code rarely spends all of the
time in these library calls.
The next programming technique is automatic parallel code

generation by the compiler (e.g., OpenMP591 and HPF592); with
the possible exception of single-node parallelization, this often
results in disappointing performance because, without further
guidance by the programmer, the compiler can recognize data
parallelism only at very low levels.
Hence, in many cases it is necessary to manually parallelize a

program. The major programming paradigms are thread- and
process-based parallelization. Using processes amounts to run-
ning multiple copies of the application in disjoint address spaces;
data exchange between them must be programmed explicitly—
all data are private by default. The popular single-program
multiple-data (SPMD) programming model is an example of
process-based parallelization. In the thread-based model, code
sections are executed simultaneously by multiple cores sharing a
common address space; all data are shared unless specified
explicitly otherwise. Consequently, it is limited primarily to
shared-memory address machines. The hybrid model aims at
combining the strength of the process- and thread-based pro-
gramming paradigms. Specifically, this may mean spawning one
process per node and additionally creating up to nc threads per
process on each node where nc should not exceed the number of
cores per node. Parallel programming paradigms are constantly
adapting to new challenges posed by hardware development and
method development in the respective fields of research.
2.8.2.1. Internode Communication. The fundamental pro-

blem for parallel threads of execution running on different nodes
is how to exchange data between nodes since the address space is
physically disjoint. The first approach was the message passing
model with both partners actively participating in the data
transmission. This was implemented in terms of libraries such
as TCGMSG,593 PVM594 and MPI,595 where MPI is today’s de
facto standard. The disadvantage of this paradigm is a vulner-
ability to load-balancing problems if tasks are not uniform; this
can be addressed by dynamic task assignment at the cost of
additional complexity. The active pairwise participation in the
data transfer sometimes leads to awkward code and complicated
bookkeeping of the distributed data. One-sided memory access,
accessing remote data without explicit coordination of the
remote processes (e.g., ARMCI,596 DDI,597 PPIDD,598 and
MPI-2595), can simplify the application code programming
considerably. By extending this paradigm to globally distributed
data structures (global arrays596), much of the bookkeeping in
the application code can be avoided. Yet, due to efficiency or
compatibility with the underlying algorithms, it is not always
sensible to use such global data structures. While decomposing
the dominant task in a serial code into independent tasks, with
either static or dynamic load balancing, the structure of the code
remains basically intact. Carrying out data-parallel operations on
distributed data or using parallel linear algebra (via libraries, e.g.,
ScaLAPACK599) is straightforward. To take full advantage of
distributed data (e.g., because the available memory per node is
insufficient), the basic (serial) kernels must be modified in order
to match operations and data access patterns under constraints
arising from communication overhead and bottlenecks, load
balance, and local memory requirements.
2.8.2.2. Intranode Communication. Processes run on the

same node and work within the same physical memory but with

distinct virtual address spaces. Thus, the message-passing para-
digm can also be used for process communication within a node.
This can simplify the programming demands because it allows
the same programming model to apply to both the distributed-
and shared-memory levels of the hardware. Alternatively, the
processes may set up a common memory segment to be shared
by all, which can be much faster than transferring data via a
message-passing interface. However, the application must ensure
that no two processes write simultaneously to the same memory
address since the result would be unpredictable for any non-
atomic operation (race condition). This can be achieved either
by appropriately modifying the application algorithm to allow
only disjoint access or by using semaphores to define critical code
regions that can be entered by only a single process at a time. The
latter approach involves some overhead and implies partial
serialization of the code, which can result in performance bottle-
necks. Usually, processes are created for the lifetime of the code,
though this is not mandatory.
The paradigm of multithreading parallelism advocates the use

of threads, lightweight processes that require low overhead for
creation and destruction, making feasible threads with short
lifetimes dedicated to specific tasks. In addition, threads inherit
and share all data of the parent processes plus additionally having
private local data (possibly copies of certain data of the parent
process). Thus, a thread-safe code must avoid modifying shared
data in an unpredictable manner (e.g., simultaneous access by
multiple threads). Threads can be manipulated either explicitly
through calls to the pthread library600 or implicitly by use of
compiler directives (e.g., OpenMP591) that signal the compiler to
automatically add the supporting code. Although multithreading
is used for fine-grain parallelization, it should not be taken to
extremes. With all data residing in cache, a thread lifetime of the
order of at least about a millisecond (or∼107 operations) greatly
exceeds the thread administration overhead (1�10 μs on current
architectures) and should yield good parallel performance.
Process-based parallelism (either message-passing or intra-

node shared-memory) can be combined with multithreading in a
hybrid programming model.
2.8.2.3. GPU and Accelerator Usage: Recent Developments.

GPUs, as well as accelerators, take advantage of tightly coupled
vectorization and parallelization by distributing data-parallel
SIMD-like tasks across multiple stream processors. Technical
specifications quickly become outdated due to the rapid devel-
opment in this field, so the following performance values serve
only as a guide. The internal memory bandwidth is very high
(∼150 GB/s), while the interface to the computer’s main
memory is relatively slow (∼4 GB/s) given the peak perfor-
mance between 100 and 1000 GFLOP/s. Multiple GPUs or
accelerator cards, equipped with several GBmemory each, can be
attached to a single host. However, in order to extract the
computational power, the GPU kernel must contain little or no
logic and have a large ratio of floating point operations to data
items; the matrix�matrix multiply operation is the typical
benchmark. Due to the slow connection to the computers main
memory, especially withmultiple GPUs, invokingGPU kernels is
often bandwidth-limited. Ideally, the compute-intensive, data-
parallel kernels should remain as long as possible on the GPU
while generating only a modest amount of output data. The
actual hardware-dependent code is usually generated by com-
pilers, guided by compiler directives that define the parallel
sections and the partitioning of data and that initiate data
transfer between host and GPU. Optimization of algorithms is
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challenging because the actual run-time behavior is difficult to
analyze and to connect to the structure of the algorithm. Simple
data-parallel algorithms are advantageous in this task. GPU or
accelerator card usage has been reported in context with integral
evaluation within the framework of Hartree�Fock601�603 and
density functional theory.604,605

2.8.3. Parallel Multireference Methods. 2.8.3.1. Four-
Index Transformations. Because the electron correlation energy
converges very slowly with basis set size, highly accurate calcula-
tions even on rather small molecules can require very large basis
sets. On the other hand, for more qualitative investigations of
excited states of larger molecules (20�30 atoms), the AO basis
set requirements are somewhat relaxed, yet the total basis set size
easily reaches 300�500 basis functions andmore. While the one-
and two-electron integrals are best evaluated in the atom-
centered basis (possibly symmetry-adapted), the wave function
optimization and manipulation is best carried out in an ortho-
gonal basis of molecular orbitals. Hence, a four-index transfor-
mation is necessary to switch between AO- and MO-based
representations. Since four-index transformations play a central
role in the wave function optimization and gradient evaluation
steps, some variants of parallel implementations are discussed
in detail.
The full four-index transformation

ðijjklÞ ¼ ∑
n

μvkλ
CμiCvjCkkCλlðμvjkλÞ ð205Þ

evaluated straightforwardly with eight nested loops requires
O(n8) multiplications. Decomposing the transformation into
four quarter-transformations and storing the intermediates re-
duces the effort to O(4n5)

ðijjklÞ ¼ ∑
n

μ
Cμi½∑

n

v
Cvj½∑

n

k
Ckk½∑

n

λ

CλlðμvjkλÞ��� ð206Þ

More efficiently, the AO integrals are sorted into distributions
such that all integrals with the common index pair μν are
collected into a matrix Ikλ

μν with indices kλ. The transfor-
mation proceeds by the first half-transformation of each
distribution Iμν

Iμvlk ¼ ∑
kλ

CkkI
μv
kλCλl ð207Þ

In matrix notation, Iμν = CTIμνC. This localizes the memory
access for each distribution within the procedure. This is
followed by a disk-based (or, in a parallel environment,
distributed-memory-based) transposition606 of the half-
transformed integrals Ikl

μν f Iμν
kl to prepare for the second

half-transformation

Iklij ¼ ∑
μν

CμiI
kl
μνCvj ¼ ðijjklÞ ð208Þ

Substantial savings can be achieved by exploiting the 8-
fold permutational index symmetry of the two-electron
integrals.362,364 This conventional procedure requires the
intermediate storage of n4/4 half-transformed integrals, and
along with the storage of the n4/8 AO integrals and n4/8 MO
integrals (ignoring any numerical sparsity in these arrays)
amounts to 250 GB and 1.27 TB for 500 and 750 basis
functions, respectively. Abelian point group symmetry adds a
further reduction factor of approximately the order of the

point group. Even with TB hard disks, the initial sorting and
the transposition step requires at least one, relatively slow,
random access I/O step.
In many cases, it is necessary to perform the four-index

transformation for only a subset of all MO integrals with up to
nx external MO indices required. If o denotes the number of
internal orbitals occupied in the MCSCF or reference wave
function, the number of required MO integrals is O(o4�nxnnx)
and the number of the half-transformed integrals is O(o2n2) for
nx = {0,1}, O(on3) for nx = {2,3}, and O(n4) for nx = 4. The
number of integrals determines whether a particular subset must
be stored in external storage (requiring I/O), distributed in
memory across the entire machine (requiring internode com-
munications), or replicated on each of the nodes (requiring local
memory).
Integral-direct four-index transformations skip the separate

AO integral evaluation step, and evaluate and process the AO
integrals directly as needed. Thus the first half-transformation in
the AO-driven procedure is replaced by four nested loops over
shell-blocks, thereby computing and processing batches of shell
quadruples. The memory requirement of O(s2n2), where s
denotes the number of basis functions per shell block, can be
further reduced to O(s3n) by partially discarding the permuta-
tional index symmetry607,608 and computing certain AO inte-
grals more than once. This allows the first half-transformation
to be split into two quarter-transformations, so that the latter
step can operate on subsets of the first quarter-transformed
integrals, at the expense of a 4-fold redundant integral
evaluation. The number of half-transformed integrals remains
unaffected.
A variant of the four-index transformation, which is better

suited to prescreening techniques, has been proposed by
Taylor.609 Coulomb and exchange operator matrices are directly
assembled from the AO integrals and subsequently transformed
to the MO basis to yield the final MO integrals.

Jklμv ¼ ∑
kλ

CkkCλlðμvjkλÞ ¼ ∑
kλ

Dkl
kλðμνjkλÞ ð209Þ

Kjk
μλ ¼ ∑

νk
CνjCkkðμνjkλÞ ¼ ∑

μν
Djk
vkðμνjkλÞ ð210Þ

The formal scaling of O(n6) appears very unfavorable compared
to the standard algorithm. However, density matrices are more
localized than MO coefficients. By using efficient prescreening
techniques based upon the maximum density matrix element D0,
along with precomputed estimates of the AO integrals per shell
block using the Cauchy�Schwartz inequality

jðμνjkλÞj e jðμνjμνÞj1=2jðkλjkλÞj1=2 ð211Þ
the number of integrals may be reduced asymptotically to O(n2)
for extended molecules, and hence the overall scaling reduces to
O(n4) for the J and K matrix construction. A similar screening,
based on MO coefficients, is also applicable to AO-direct
implementations of the standard scheme.608

Another approach is based on use of the resolution of the
identity (RI) or density fitting methods,610�612 i.e., approximat-
ing one- and two-center orbital products by a one-center auxiliary
basis χP

ðμνjkλÞ≈ ∑
PQ

ðμνjPÞðPjQ Þ�1ðQ jkλÞ ð212Þ
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For partially transformed two-external integrals

ðaijbjÞ≈ ∑
P

BP;aiBP;bj ð213Þ
ðabjijÞ≈ ∑

P
BP;abBP;ij ð214Þ

BP;pq ¼ ∑
Q

½ðPjQ Þ�1=2�PQ ∑
μ

Cμp ∑
ν
Cν;qðQ jμνÞ ð215Þ

the construction of the intermediate quantities BP,ab requires
O(n3Naux) operations and O(n2Naux) storage. The final step to
transform the intermediates to the final MO integrals requires
O(o2n2Naux) operations. Auxiliary (RI) basis sets for different
purposes have been optimized which scale linearly with the basis
set size; typically Naux ≈ 3n.
A closely related approach initially proposed by Beebe and

Linderberg53 is the Cholesky decomposition (CD). The positive
semidefinite two-electron integral array V is written as a matrix
product of the lower triangular supermatrix L

ðμνjλσÞ ¼ V ¼ LLT ¼ ∑
K

Lμν,KLλσ,K ð216Þ

The expression is exact if the L matrix (or Cholesky factor)
contains the full n(n + 1)/2 columns. This would result in an
effort of O(n6) for the construction of L followed by another
O(n6) step to obtain the final integrals. The error of an expansion
up toM columns is given in terms of the residual matrix elements
DM

μν,λσ

DM
μν, λσ � jðμνjλσÞ � ∑

M

K¼ 1
Lμν,KLλσ,K j

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DM
μv, μνD

M
λσ, λσ

q
e max

μ0ν0
ðDM

μ0ν0 , μ0ν0 Þ e δ

ð217Þ
Since CD is a recursive procedure, it offers a way to truncate the
expansion when the acceptable error is below a given limit; δ =
10�4 approximately corresponds to the accuracy with optimized
basis sets. In practice, the number of columnsM that need to be
included has been found to grow linearly with the basis set size
(M ≈ 3n to 10n). Under this assumption, the computational
effort is of the same order as that for the RI methods. The CD
method can be viewed as a scheme to eliminate the redundancy
(or linear dependency) of the one-electron basis function
product space (μν). Therefore, further approximations such as
retaining only one-center product terms (1C-CD)613 or gener-
ating atom-specific (acCD)614 Cholesky decompositions for the
product densities have been proposed. These, however, are no
longer exact even in the limit of a complete Cholesky decom-
position, but they do offer computational advantages. See ref 55
for a discussion on the relationship between the RI and CD
methods. A critical comparison in terms of accuracy and perfor-
mance can be found in ref 612. Analytical gradients using this
approach are available.615

The significantly reduced storage requirements for the three-
index intermediates results in this approach being particularly
beneficial when the resulting MO integrals are immediately
processed. The RI approximation has been successfully applied
to MP2610 and CC2616 methods, including parallel implementa-
tions,617 where the auxiliary basis was tuned to reproduce occupied-
virtual orbital products. CD-based variants of CASSCF,618

CASPT2,619 and local MR-CISD299 as well as parallel, integral-
direct, CD schemes620�622 have been reported recently.

2.8.3.2. Integral-Direct MCSCF and MRCI. As discussed in
section 2.2, first-order convergentMCSCFmethods require only
the 0- and 1-virtual MO subset integrals, of which there are only
O(o3n) in number. The small number of integrals, the small
memory requirements for intermediate quantities, as well as
additional simplifications for the inactive orbitals makes these
first-order convergent approaches attractive for large basis sets
despite the slow convergence of the orbital optimization and the
associated difficulties related to excited-state optimizations.
Second-order methods require, in addition, the 2-virtual MO
subset integrals as well as one- and two-particle transition density
matrices. The orbital optimization equations may be solved using
a variety of approaches. One approach is to explicitly construct
the gradient and Hessian elements in the MO basis using
eqs 80�86. This requires the appropriate 0-, 1-, and 2-virtual
MO subset of integrals which, in turn, can be computed either
from the stored integrals, from the AO-direct methods discussed
above, or from the Cholesky or RI approximations. Alternatively,
the optimization equations may be solved using iterative sub-
space methods, in which matrix�vector products of the form
Gorb,orb
mc k, Gcsf,orb

mc k, Gorb,csf
mc p, and Gcsf,csf

mc p are constructed for
arbitrary expansion vectors k and p. These matrix�vector
products may be computed in operator form using symmetrized
one-index transformed integrals and transitiondensitymatrices,19,358

which in turn may be computed either from explicitly stored
integrals or with AO-direct methods.
In MR-CISD, the contributions of all three- and four-external

MO subset integrals to the w = Hv vector can be formulated
in terms of exchange operator matrices, i.e., the contrac-
tion of densities with (ab|cd) and (ab|ci). These integrals
typically constitute the vast majority of all two-electron
integrals.39�42,207,209

Kab, p ¼ ∑
cd

Dp
cdðacjdbÞ ¼ CT½∑

vk
½CDpCT�vkðμvjkλÞ�C

ð218Þ
The index p represents a particular occupation and spin coupling
pattern of the internal orbitals (i.e., an internal walk in a GUGA
implementation), and Dcd

p , which is composed of the elements of
a subblock of the current trial vector and the coupling coeffi-
cients, assumes the role of a density matrix element. All density
matrix elements can be grouped into as many matrices as there
are internal walks. Rather than transforming the AO integrals
once to the MO basis and storing and accessing them repeatedly
within the matrix�vector product step (the Hamiltonian blocks
are never explicitly constructed), the density matrices are trans-
formed to the AO basis, contracted with the on-the-fly computed
AO integrals, and finally the resulting exchange operator matrices
are transformed from the AO to the MO basis as indicated in
eq 218. The number ofDpmatrices for ic-MRCI is much smaller
than for uncontracted MRCI, a consequence of the different
number of variationally optimized parameters. This AO-based
approach eliminates the need to store the three- and four-
external subset MO integrals, which then simplifies the trans-
formation and storage steps for the remaining two-electron
integrals.
2.8.3.3. Parallel MCSCF. Although there are several parallel

MCSCF codes available,219,123,120�122,623 they do not necessarily
perform well in terms of scalability or resource requirements.
The MCSCF procedure is composed of three major steps
per macroiteration: (i) partial AO�MO transformation, (ii) CI
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eigenvalue problem, and (iii) solving the wave function correc-
tion equations. Of these, the AO�MO transformation (possibly
integral-direct) is most frequently implemented in parallel. This
is particularly beneficial when the intermediates are completely
kept in (distributed) memory. For large wave function expan-
sions, the CI wave function optimization step may consume a
substantial fraction of the total CPU time and can benefit from
parallelization. For large active spaces, it is imperative to either
recompute the coupling coefficients within each Davidson itera-
tion cycle (e.g., GUGA28 and SGUGA624) or to make use of the
string-based algorithms which operate in a basis of determinants.
By use of the resolution of the identity,

Hjk ¼ ∑
pq

hpqÆjjEpqjkæ þ 1
2 ∑pq

ðpqjrsÞÆjjEpqErs � δqrEpsjkæ

ð219Þ

¼ ∑
pq

hpqÆjjEpqjkæ þ 1
2 ∑pqrs

ðpqjrsÞ½∑
k0

ÆjjEpqjk0æÆk0jErsjkæ

� δqrÆjjEpsjkæ� ð220Þ
the two-electron coupling coefficients may be expanded as
products of one-electron coupling coefficients. Several variants
of the original scheme46 eq 220, which wrote the determinants in
terms of α and β strings (|Kæ = |KαKβæ), have been proposed and
implemented.370,625 An important feature of this approach is that
the contraction of the integral arrays with the one-particle
transition density matrix elements can be cast as a dense
matrix�matrix product, yielding a very efficient computational
kernel that parallelizes readily. A related concept for determi-
nant-based full-CI uses α, β strings and replaces the resolution of
the identity in favor of a more efficient identification of determi-
nant pairs, yielding nonzero coupling coefficients in terms of
reduced lists.626 Further development of string-based CI has
been directed toward the efficient handling of multiple active
spaces with occupation restrictions,4,359,367,574 retaining flexible
wave function expansions while reducing the expansion space
dimensions compared to traditional complete active spaces.
While the AO�MO transformations dominates for large basis

sets and moderate CI expansions, the iterative optimization steps
become more costly and more resource-consuming with larger
CI expansions. For a recent parallel determinant-based MCSCF
implementation627 performance data were reported for an 1112

expansion with 451 basis functions: steps i to iii consume wall
clock time with the ratio 90:1:10. Only the orbital Hessian block
Gorb,orb
mc was included in step iii. In case of a dominant AO�MO

transformation, a fast and reliable second-order wave function
optimization with a minimum number of expensive four-index
transformations such as the model Hamiltonian approach pro-
posed byWerner214 is advantageous, although no parallel version
exists to date. The main focus in parallel MCSCF codes has been
on the first two major steps. The combination of large basis set
sizes and large CI expansions gives rise to huge dimensions of the
orbital optimization problem, within which each iteration re-
quires a pass through integrals, densities, and transition densities.
With increasing size of the equations, the iterative solution tends
to take not only more time per iteration but it also often
converges more slowly. With state-averaged MCSCF, this tech-
nical problem can be even more pronounced.628

2.8.3.4. Parallel MRCI. The matrix�vector product formation
w = Hv in the direct-CI approach accounts for almost the entire

computer time of a CI calculation, and the parallelization effort is
usually directed to this step. Some other steps of the procedure,
such as the operations involving the subspace W and X arrays,
computation of the subspace elements ~H and ~S, and computation
of the residual vectors are trivial to parallelize on the basis of the
distributed storage of the subspace arrays. With the appropriate
partitioning of the two-electron integrals and of the vectorsw and
v, the entire workload can be split into an almost arbitrary
number of tasks.638,213,631,636,629 The computational efficiency of
MRCI implementations derives from the ability (i) to efficiently
evaluate the coupling coefficients and (ii) to contract them with
the corresponding integrals and trial vector coefficients in terms
of efficient vectorizable matrix�vector and matrix�matrix op-
erations. There are three major variants of such schemes:
the graphical unitary group approach (GUGA),6,28 the sym-
metric group graphical approach (SGGA),6,630 and string-based
CI.46,625,370,436 Both GUGA and SGGA operate in a basis of spin-
adapted configurations while string-based CI employs a basis of
Slater determinants. GUGA and SGGA are typically limited to
MR-CISD expansions since they exploit the simplicity of the
coupling coefficients in the two-electron external orbital space
while providing efficient means to evaluate the internal coupling
coefficients.6 Unlike GUGA, the closely related SGGA method
does not explicitly incorporate spin-coupling information into
the graphical representation of the configuration space. String-
based CI is particularly well suited for full-CI because the
insertion of the resolution of the identity does not introduce
additional intermediate determinants (i.e., k0 ∈ {j,k} in eq 220).
Also a priori configuration selection schemes such as ORMAS
and GASCI, which closely resemble direct products of full-CI
subspaces, are implemented in terms of string-based CI, although
in this case the intermediate states k0 extend the underlying
determinant space. As discussed in more detail below, relativistic
two- and four-componentMCSCF andMRCImethods are more
frequently represented in a basis of determinants than in terms of
CSFs, although the choice is of a technical nature. Implementa-
tions of parallel MRCI code 10 years and older are currently only
of historical or conceptual interest because the computational
hardware architecture has changed dramatically, particularly at
the higher end supercomputer level. Nevertheless it is safe to
state that there are several very promising determinant-based
implementations of full-CI56,631�634,636 and GASCI578,635 with
up to 60 billion determinants for calculations on diatomics.636,637

For unitary and symmetric group based implementations
COLUMBUS118 and MOLPRO120 are among the most popular
general parallel uncontracted and internally contracted MR-
CISD codes, respectively. Both codes have been applied to the
notoriously difficult chromiumdimer potential curve. The largest
uncontracted expansion reported is about 2.8 billion CSFs,638

and the largest contracted expansion reported is about 147
million variational parameters and corresponds to an underlying
uncontracted expansion space of about 10.2 billion639 CSFs.
Another GUGA-CI code with less favorable parallel scaling
properties has been recently described.640 As was demonstrated
in the application of DFT/MRCI on β-carotenes,641 individually
selected MRCI implementations tend to scale considerably
worse than the MR-CISD expansions because of the unfavorable
memory access patterns, cache misses, and poor load balancing.
Thismethod642 involves the approximate treatment of dynamical
electron correlation with DFT by empirically modifying selected
CI matrix elements, while near-degeneracy effects were treated
by configuration interaction. Since individually selected MRCI
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implementations compute the CI matrix elements indepen-
dently, this merges well with the DFT/MRCI approach, while
the computational effort is significantly reduced due to the
drastically decreased size of the variational CSF space. Parallel
scaling of some full-CI631 and GASCI635 implementations was
reported to be sensitive to I/O for large expansions. This is
because the subspace expansion vectors were stored on disk, and,
although computationally inexpensive, the construction of the
subspace representations, along with the subspace contractions
and other subspace operations, are I/O bound.
2.8.3.5. Parallel MCSCF Derivatives, MR-CISD Gradients,

and Nonadiabatic Coupling. For the single-state MCSCF
gradient, the Fock matrix, 1-RDM, and 2-RDM in the MO basis
are computed as part of the normal iterative procedure. These
arrays from the finalMCSCF iteration are then back-transformed
to the AO basis according to eq 137. This may be done in a
parallel implementation, in analogy to the two-electron repulsion
integral transformation, with two main differences. One is the
trivial observation that the roles of the AO and MO indices are
interchanged, which is easily accounted for by transposing the
orbital coefficient arrays within the procedure. The other is that
the MO density matrix involves only occupied orbital indices, so
the total array storage is usually small enough to be replicated as
necessary on multiple nodes without bandwidth or total storage
concerns. This allows the larger AO arrays to be computed in
independent blocks on various nodes without a prior sorting
step. These AO arrays are then used as input to the final gradient
computation step that implements the derivative contractions of
eq 136. In a parallel implementation, this involves sorting the AO
arrays into shell blocks, distribution of those shell blocks to the
compute nodes, computation of the set of derivative integrals for
those shell blocks, and finally the accumulation of the gradient
contributions. The partial gradient contributions from the var-
ious compute nodes are then globally summed after all shell
blocks have been computed.
The state-averaged MCSCF gradients additionally involve the

solution of the linear equations of eq 148 and the effective two-
particle density construction in eq 151. These steps are required
for each state for which the gradient is being computed. After the
effective density matrices are constructed, the remaining steps
are identical to the single-state MCSCF case. In the back-
transformation step, if the density matrix distributions for all of
the states are considered together, then there are either a larger
number of tasks than in the single-state case, or if the distribu-
tions are grouped together, the tasks are larger than in the single-
state case; both situations are beneficial to parallel efficiency. In
the AO contraction step, there is the further choice of computing
the derivative integrals redundantly for each state (resulting in a
larger number of tasks with less local memory requirements), or
of grouping together the shell blocks of density matrices for all
the states of interest and performing the contractions of eq 152
with the unique set of derivative integrals.
The evaluation of the analytic gradients for MRCI wave

functions consists of the following major steps. First, after the
CI energy and wave function are computed, the CI 1-RDM and
2-RDM are constructed. In a parallel implementation, this step is
very similar to a single iteration of the wave function optimization
procedure and requires a comparable amount of effort. The CSF
expansion coefficients are combined with the coupling coeffi-
cients to produce the density matrix elements. The density
elements are generally stored either on external disk or in
distributed memory. Next, the CI 1-RDM and 2-RDM are

combined with the integrals to compute the MO Fock matrix
according to eq 82. Those elements are then used to compute the
CI orbital rotation gradient. This may be accomplished by sorting
simultaneously the integrals and density matrices by distribu-
tions, and the Fock matrix elements are computed as the
summation of the matrix�matrix products across all of the nodes

Fci, jpq ¼ ∑
st
∑
r
gstprd

stðci, jÞ
qr ¼ ∑

st
gstdstðci, jÞ ð221Þ

This results in good memory locality while retaining an efficient
computational kernel. In multiple state calculations, these com-
putations can be distributed independently of the state index j,
resulting in a larger overall number of tasks, or all of the (st)
distributions with all states of interest can be treated together
with the same number of tasks but withmore computation within
each task. Once the CI Fock matrices are available, the remaining
steps are analogous to those of the state-averaged gradient
procedure discussed above.
The parallel nonadiabatic coupling computation is almost

entirely analogous to the corresponding analytic gradient com-
putation steps. After the energy denominators are factored into
the effective density matrices, the computational equations are
almost identical to those of the analytic gradient procedure (i.e.,
either the state-averaged MCSCF or multiple-state MRCI). The
only new quantity required in eq 179 is the skew-symmetric one-
particle transition density matrix, the construction and transfor-
mation of which is a trivial operation with no significant parallel
consequences.
In contrast to the evaluation of analytical gradients, the

evaluation of analytical geometric second derivatives even in
the favorable case of a variational CASSCF wave function requires
the solution of ∼3Natom coupled-perturbed MCSCF equations.
Integral-direct approaches are preferred to prevent a memory
storage or disk I/O bottleneck.643 Recently, Dudley et al. reported
an integral-direct parallel implementation of analytical geometric
second derivatives of CASSCF wave functions with good parallel
scaling.644

3. APPLICATIONS

In this section, some applications of the methods in this review
are discussed. A complete overview of the several hundred
applications is certainly out of the scope of the present review;
our aim is rather to show the potential and applicability of the
different methods and techniques and, by discussing some
representative calculations, to help the reader to select the
appropriate approach for particular molecular systems.

Multireference methods are generally necessary for the de-
scription of potential energy surfaces, in particular when a wide
range of the coordinate space is considered. Typical examples are
the calculation of vibrational spectra including higher vibrational
states, chemical reactions, and photochemistry. Additionally,
excited states very often require the flexibility of a multireference
description, even near equilibrium geometries. Furthermore,
multireference methods are certainly needed to describe weak
bonds and transition metal complexes characterized by nearby
electronic states.

The applications in this section will be discussed from two
perspectives. First in section 3.1, a survey is presented of typical
applications for the methods described in section 2. Applications
using the size-consistency corrected methods, approximate CI
methods, and relativistic methods are discussed. Then in sections
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3.2 and 3.3 a molecule-oriented overview is given. Specific
applications are described, and the strengths and weaknesses of
the multireference methods are discussed. Finally, in section 3.4
some general aspects of the choice of molecular orbitals are
discussed.

3.1. Overview of the Application Fields of Various MR
Methods
3.1.1. Size-Consistency Corrected Methods. Without

size-consistency corrections, MRCI results can be biased due
to the change of the correlation energy across a PES. Therefore,
since the beginning of MRCI calculations, some kind of David-
son-type correction has been applied. Examples include the
works by the groups of Buenker and Peyerimhoff (see, e.g., refs
82, 89�91, and 96), by Bauschlicher and co-workers (see, e.g.,
refs 97 and 645�647), by Schwenke and Truhlar,98 and by
Hogreve99,690�693 or the newer results byWerner et al. (see, e.g.,
refs 105, 648, and 649). A very recent, high-accuracy calculation
on the vibrational levels of LiH by Holka et al.650 also shows the
importance of size-consistency corrections.
In a certain sense, CEPA type methods are preferable over the

Davidson-type corrections. Indeed, the size-consistency cor-
rected methods are widely used in several fields of chemistry.
These include calculation of potential energy surfaces, associated
vibrational and rotational spectra, excited states and associated
spectroscopy, reaction mechanism, properties of transition metal
compounds, molecules with heavy elements, noble gas com-
plexes, and reaction control. These methods often serve as a
source for benchmarks in studies where lower level methods,
such as DFT orMP2, are used as the main method. They are also
used to benchmark high-level single-reference calculations, such
as CCSD(T), in cases where eventual multireference effects are
significant. The most popular methods are MR-ACPF and MR-
AQCC, followed by MCCEPA. There is no clear preference in
the literature of applications between MR-ACPF and MR-
AQCC, and often they are used together. QDVPT was used
for several studies shortly after it appeared (e.g., for conjugated
polyenes651,652), but much less recently. Different versions of
MC-CPA have been used in calculations mostly on diatomic
molecules of d- and p-shell filled metals, such as GaH or TiCl,
concentrating on both ground and low-lying excited states.653,654

Interestingly, two advanced versions, MR-CEPA andMR-(SC)2-
CI, have received little attention in applications (one example is
discussed as follows).
The popularity of the MR-ACPF and MR-AQCC methods

is clearly due to their simplicity, the close relation to MRCI,
the availability of analytic gradients, and, perhaps most
importantly, their availability in popular program systems
(COLUMBUS,118,119 MOLPRO,120 andMOLCAS123). MC-CEPA
has been implemented into theBochum suite of codes153,185�187with
the PNO approximation,15,16 and this enables its application to larger
molecules.
To obtain accurate potential energy surfaces, it is apparent that

the MRCI method without the correction for size-consistency
error will not provide the necessary accuracy. Therefore, the
CEPA-type methods are used in most cases. A large number of
applications on diatomic molecules, including the study of their
excited states, can be found in the literature. This includes a
systematic study of the homonuclear diatomic molecules by
M€uller et al.,655 the N2 molecule by Gdanitz,656 and the Be2
dimer by F€usti-Molnár and Szalay,161 Gdanitz,657 and Martin.658

All of these studies used MR-ACPF and/or MR-AQCC methods.

Van de Bovenkamp and van Duijneveldt659 used the MC-CEPA
method in an often-cited, systematic study of He2. M€uller638

recently used the MR-AQCC method to study the long-standing
Cr2 problem.
Ozone has been investigated extensively by multireference

methods. M€uller et al.660 calculated the energy difference be-
tween the open and the ring isomers of ozone, as well as the
dissociation energy, with MR-AQCC using up to quintuple-zeta
basis sets and basis extrapolation. MR-AQCC has been also used
to obtain accurate three-dimensional potential energy surface by
the group of Schinke.661,662 The complete three-dimensional
global surface has been constructed using basis sets up to quad-
ruple-zeta quality and basis set extrapolation. Vibrational levels,
and, in particular, the dissociation channel were studied. Re-
cently, Holka et al.663 extended these calculations, and some
parts of the ozone surface were calculated with even larger
basis sets.
A very accurate PES has been constructed by Barletta et al.664

for the water molecule along the bending coordinate up to
dissociation. The basic surface is obtained with the ic-MR-AQCC
method, and corrections for core-correlation, relativistic effects,
infinite basis set have been applied.
He2 has already been discussed in connection with diatomic

molecules. Other rare gas molecules were also treated by MR-
ACPF (Ar�CO and Ar2 by Jansen,

665 neutral XeF by Schr€oder
et al.666) and byMR-AQCC(HArF andHKrFbyChaban et al.667).
Both MR-ACPF and MR-AQCC (in connection with the ic
implementation in MOLPRO) was suggested for “the theoretical
study of neutral rare-gas compounds for organic chemists”.668

Electron collision of Cl2,
669 HBr, and DBr670 were studied

using the MR-AQCC method. These surfaces were found to
describe accurately the low-energy electron�HBr collision
dynamics.670

MR-AQCC has been used for method calibration in regard of
the PuO2

2+ by Ismail et al.671 This work extends the application
range of the CEPA-type methods even to the f-shell metals
(actinides).
To simulate the HCN-HNC isomerization in a laser-con-

trolled pump�dump scheme, Jakubetz and Lan672 calculated the
three-dimensional ground-state potential energy and dipole
surfaces with the MR-AQCC method. They showed that it is
possible to prepare a pulse that brings the molecule from the
HCN ground vibrational state to HNC excited bending states.
In cases where DFT or low-level ab initio methods are often

sufficient to describe preparative chemistry, MR-AQCC has been
used to describe intermediates (see, e.g., the work of Creamer
et al.673 on dioxirane and its substituted counterparts) or to
characterize unstable species (see, e.g., Pasinszki et al.674).
Other applications include PESs for excited-state dynamics,

but these will be discussed separately in section 3.2.
Finally, some applications of MC-CEPA are given since these

are somewhat differerent from those of MR-ACPF and MR-
AQCC, due, in particular, to the use of PNO formalism which
allows application to larger systems. It was mostly used to
describe oxides (e.g., ZnO) and their surfaces and processes
thereon (see, e.g., ref 675). There are spectroscopy applications
in the literature,676 as well.
Applications with explicit higher excitation corrections to

MRCI are rare because of higher costs and also because of the
lack of availability within popular program systems. An exception
is the accurate diatomic potential energy curves obtained with the
CEEIS method.199�201,203
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3.1.2. Approximate CIMethods.Due to their cost-effective
nature, approximate CI methods are indeed very popular in
applications. Most common are the ic-MRCI method of Werner
and Knowles209,210 and the MRD-CI method (and program) by
the group of Buenker and Peyerimhoff.274�276

Over 1500 application papers cite the papers of Werner and
Knowles209,210 describing the ic-MRCI method. Some of these
use size-consistency-corrected MR-AQCC or MR-ACPF and
have previously been discussed. Typical applications mostly
include determination of potential energy surfaces for spectros-
copy or the study of reaction mechanism. The most cited
applications are the water surface by Partridge and Schwenke,677

the transition state for the H2 + F and the Cl + HD reactions by
Manolopoulos et al.,678,679 properties of lanthanide compounds
by Dolg et al.,532 OH + Ar as well as CN + He potential energy
surface and quantum scattering thereon,680,681 the structure of
alkaline-earth dihalides,682 the correlation energy of gold,683 the
accurate enthalpy of formation of OH by Ruscic et al.,684 HSO by
Xantheas andDunning,685 and the low-lying states of ClO2.

686 ic-
MRCI was also used in photodynamics (see, e.g., ref 687), the
singlet�triplet splitting in benzyne,688 and many more. Con-
cerning the “very accurate” regime, the magnitude of the error
arising from the internal contraction remains unclear.
Individually selected CI methods, in particular the MRD-CI

method of Buenker and Peyerimhoff,274�276 have also been used
mainly in the field of excited states (spectroscopy,733,785 includ-
ing nonadiabatic couplings,689 photodissociation,778 etc.), but
they have also been used for the determination of molecular
structure, and reaction mechanisms. Hogreve successfully used
this procedure to calculate the structure and properties of
molecular ions including the ion of helium dimer99 and trimer,690

the dication of carbon trimer691 and carbon dioxide,692 as well as
highly charged atoms.693 The new version in DIESEL-CI opened
the way for organic chemistry applications.694�696

3.1.3. Relativistic Calculations. The most popular ap-
proach to deal with the inclusion of scalar-relativistic effects
has been the use of relativistic pseudopotentials in otherwise
nonrelativistic calculations, serving both the purpose of reducing
the computational effort by freezing the core�electrons and
retaining the well-developed nonrelativistic machinery. For light
elements, a posteriori perturbational corrections for the mass-
velocity and Darwin terms based on the nonrelativistic electron
density are frequently applied. These applications are primarily
concerned with molecular structure and energetics of com-
pounds containing one or more d-transition metal, lanthanide
or actinide elements, and, to lesser extent, the main group post-f
elements, where the relativistic contraction has substantial im-
pact on the chemical properties. This work has triggered the
development of systematic basis set series for relativistic pseu-
dopotential calculations in the spirit of the correlation-consistent
basis sets.555,697 Many conventional MRCI studies of transition
metal compounds followed this approach.698,699

For the spectroscopic properties of the heavier elements, the
inclusion of spin-orbit coupling is imperative. Until recently, the
primary method of choice has been RECPs with spin-orbit
potentials in combination with two-component spin-orbit CI
based on nonrelativistically optimized (scalar) molecular orbi-
tals. The spectroscopy of actinyl ions (AcO2

n+, Ac d U, Np, Pu,
Am) including intensities was of particular interest in recent
years,700�703 while early spin-orbit CI calculations focused on
main group dimers and hydrides.704,705,562,706 The analysis of
the X�A electronic spectrum of Ag3 and the presence of

Jahn�Teller effects has also been addressed recently.707 On
the basis of spin-orbit RECPs or ECPs combined with AMFI
spin-orbit integrals, two-step approaches assuming some degree
of separability of electron correlation and spin-orbit coupling
have been applied to the study of the spectroscopy of iodine,708

structure optimizations and reaction energies of actinyl ions in
aqueous solution,709 or the spectroscopy of710 Ag/Ag+. The
AMFI/DKH approach integrates well with two-component
spin-orbit CI and offers a route to all-electron spin-orbit coupling
treatments to both one- and two-step approaches. Yet, CI-based
applications are limited to small molecules and atoms.711 The
two-step variants of the DFT/MRCI method have been found to
face difficulties in selecting the appropriate CSF space to give a
balanced treatment of spin-polarization. The recently implemen-
ted one-step approach appears more reliable, and application to
large molecular systems, such as models of β-carotenes641 or
porphyrins,712 is possible.
Relativistic two-component approaches have been quite suc-

cessful approximations to the four-component methods, pro-
vided the innermost core orbitals of the heavy atoms are kept
inactive. In general, excitation energies, bond lengths, and
vibrational frequencies are obtained with high accuracy at sub-
stantially lower cost.711

Due to their simpler structure, fully relativistic four-compo-
nent MRCI codes have been implemented for some time. Yet,
the combination of large primitive basis sets and invariably huge
configuration spaces has been a tremendous obstacle, and early
applications have been of limited nature (UF6,

713 PtH,714 and
HX, X = F, Cl, Br, I, At 715). With the development of efficient,
parallel CI codes, new possibilities exist to treat small systems
more accurately (RbYb,716 BiH,635 and I3

� 717).
For the computation of dissociation energies, harmonic vibra-

tional frequencies, equilibrium distances for ground and excited
states (independent of the choice of a high-quality SO-RECPS,
AMFI/DKH based SO-MRCI, or four-component MRCI
treatments), it is important to include sufficient valence electron
correlation and, hence, to supply a valence basis with sufficiently
high angular momentum functions. Many calculations are far
from converged with respect to basis set and correlation
treatment and thus rely on error cancellation effects to achieve
agreement with experimental data. Only recently have suffi-
cient theoretical data been reported576 from four-component
MCSCF/MRCI calculations on UO2 that furnish a solid basis for
comparison with the more approximate data from one-step SO-
MRCI/RECPs718 (14 valence electrons correlated) and two-step
SO-CASPT2719 (14 valence electrons plus 10 semicore electrons
correlated) methods. Initially, the SO-MRCI and the four-
component MRCI calculations are in excellent agreement for
valence electron correlation, and they find a ground state of
ungerade symmetry (Ω = 2u). The SO-CASPT2 calculations on
the other hand disagree by about 1500 cm�1 for excited states of
ungerade symmetry. Upon including an additional 10 semicore
electrons in the four-component-MRCI correlation treatment,
and improving the basis set with g and h functions, the difference
reduces to about 900 cm�1. Four-component CC calculations
are in agreement with these data.720

These findings suggest that (i) the additivity assumption of
two-step approaches does not generally hold and may introduce
error of the order of up to several thousand cm�1 and (ii) valence
electron correlation alone is insufficient to obtain converged results.
Molecules containing second and third row transition metals

are particularly difficult to treat since spin-orbit coupling and
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electron correlation induce coupling of atomic states with
different d-shell orbital occupation. Large differential electron
correlation effects are typical, ruling out the practical use of any
single-reference electron correlation method. Molecular com-
pounds MeX (Me = transition metal, X = F, Cl, Br, I, O, H) are
frequently studied as prototype models for the M�X chemical
bonds.566,721 Large spin-orbit coupling, and mixing of ionic and
covalent states upon bond elongation, gives rise to a delicate
balance between spin-orbit coupling and electron correlation
effects; the computed results are sensitive to both the choice of
the molecular orbitals and to the parametrization details of
the RECPs.
The f-elements (lanthanides and actinides) may contain a

significant number of unpaired f electrons, causing narrow bands
of excited states (for a review, see ref 722). For CeO, about 16
excited states within 4500 cm�1 are reported. For the lantha-
nides, the 4f electrons are spatially well separated from the
partially filled valence shell so that large-core pseudopotentials
(including the 4f electrons) may produce good results.723,724 In
cases where the excited states are not well separated, one-step
SO-CI or uncontracted two-step SO-CI methods are adequate.
For the early actinides, the 5f orbitals contribute to the chemical
bond, and thus they cannot be neglected. On the basis of SO-
CASPT2 calculations,474 the highest bond order in the periodic
system, a quintuple designation, has been assigned to U2.
The actinyl compounds (UOn

2+, NpOn
2+, PuOn

2+) containing
one to two unpaired f electrons have been studied by several
methods. They are characterized by a ground-state multiplet of f
states, starting with the neptonyl ion. They display low-lying
charge-transfer states, and the density of states is considerably
lower than for the corresponding lanthanide compounds. The
position of the charge-transfer state does not seem to be related
to the number of open f shells. The low-lying excited states
corresponding to different f-electron distributions are consis-
tently produced by different methods—differences clearly occur
for higher excited and especially CT states.
As has been shown by Vallet et al.,709 spin-orbit coupling

effects can change the thermodynamics of a set of redox reactions
for the early actinides. The reduction of actinyl ions from
oxidation state VI to state IV in aqueous solution follows a
two-step mechanism

ðMO2þ
2 ÞðVIÞ þ 1

2
H2O f HOMO2þðVÞ þ 1

4
O2

HOMO2þðVÞ þ 1
2
H2O f MðOH2þ

2 ÞðIVÞ þ 1
4
O2

The total reaction is endothermic for M = U, while increasingly
exothermic for M = Pu, Np, and Am. For UO2+

2 the spin-orbit
effects reduce the reaction energy by 59 kJ/mol. spin-orbit effects
for the self-exchange electron transfer in binuclear Np(VI)/Np(V)
complexes in solution has been studied in a modified two-step
SO-CI procedure.725

Another field of interest is the modeling of the spectroscopic
properties of f-element impurities in some crystal environments.
One approach to model the environment uses a variant of the
model potential technique without periodic boundary condi-
tions, the AIMP embedding potential method developed by Seijo
et al.,726,727 in order to incorporate a polarizable environment. As
AIMP, it integrates well with various electron correlation meth-
ods and it is usually used in combination with MS-CASPT2 and
MRCI. Separate calculations for the excited states of Pa4+, with

and without its first coordination shell, allow the different effects
of crystal and ligand fields to be discriminated. The crystal field
lifts the atomic degeneracies and quenches SO coupling, while
the total effect yields a significantly more pronounced SO
splitting.
Similar studies on the uranyl and neptunyl ion in the crystal-

line environment of Cs2UO2Cl4 have been carried out by
Matsika and Pitzer728 using the one-step SO-CI method. The
UO2Cl4 unit was treated ab initio, the first nearest neighbor shell
was described by all-electron pseudopotentials, and the re-
maining shells were represented by point charges. The size of
the cluster representing the environment was chosen suffi-
ciently large to converge the Madelung potential for the
central Cs2UO2Cl4 unit. Only valence electron correlation
was computed.

3.2. Applications in Detail: Energy Gradients, Excited States,
and Nonadiabatic Coupling

The availability of analytic energy gradients for uncontracted
MRCI and MR-AQCC allows the systematic and consistent
treatment at the same computational level for geometry optimi-
zation and for single-point calculations. The applications de-
scribed in this section focus on “difficult” situations which cannot
be described by standard single-reference methods. These cases
contain radical and biradical structures, excited-state minima, and
conical intersection between different electronic states. These
examples will show not only results but also the choices for how
typical reference spaces for the MR-CISD and MR-AQCC
calculations can be constructed. The scope of analytic energy
gradients does not end with the static description of energy
surfaces. Challenging applications can be found in dynamics
simulations where, in classical729 or surface hopping dynamics,730

analytic energy gradients and nonadiabatic coupling vectors are
most useful to describe the dynamics “on-the-fly”.731 The large
variety of available applications requires also a significant selec-
tion in the presentation. Thus the present discussion will focus
on conjugated π systems, starting with a short discussion of
vertical electronic excitations, and will continue with a presenta-
tion of radical or biradical structures, nonadiabatic effects, and
photodynamics.
3.2.1. Vertical Excitations in Ethylene and Butadiene.

The calculation of the lowest singlet valence excitation in
ethylene, the V(π�π*) state, has a long history and is full of
difficulties. Without going back in detail into the early days of
ethylene calculations, the major problem observed in SCF and
CISD calculations was the fact that the π* orbital is too diffuse in
such calculations, resembling more a Rydberg orbital.732 The
deeper reason for this problem lies in the ionic character of the V
state as described in terms of valence bond theory. Several
successful approaches were chosen to cope with this problem.
One early approach consisted of extensive selected CI at the
MRD-CI level with extrapolation to zero threshold.733 A second
approach followed the general observation that σ�π correlation
was important to account for the different relaxation of the σ core
in the fields of ionic and covalent valence bond structures.734 The
“all σ single excitations from all π configurations” (ASSEFAPC)732

expansion produced remarkably stable and good results that were
practically independent of the type of orbitals used in the CI.
Subsequently, a two-step procedure was developed735 in which
the differential effects of σ�π correlation was used to con-
struct improved molecular orbitals in the first step, and in the
second stepMR-CISD andMR-AQCC calculations were used to
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compute global electron correlation energies for the ground and
V states. In this work, the importance of size-consistency con-
tributions as computed at the MR-AQCC level was also noted.
This topic has been taken up recently again in detailed work
analyzing the effect of σ�π correlation at the different levels
of theory.736

MRCI calculation of the V(11B1u) state of butadiene poses
problems similar to those of ethylene. CASSCF calculations with
active space spanned by the π orbitals result in too diffuse
character of the V state (see, e.g., refs 737 and 738). Additionally,
a second excited valence state of Ag symmetry is close in energy.
It has a pronounced multireference character and is dipole-
forbidden. The relative order of the two states was, and to some
extent remains, controversial. Theoretical calculations show
similar energies for vertical excitation to the two states. Two-
step MR-CISD and MR-AQCC calculations with orbitals opti-
mized to include σ�π electron correlation738 give 21Ag/1

1Bu
excitation energies of 6.55/6.18 eV. For comparison, CASPT2
calculations739 give 6.27/6.23 eV, EOM-CCSD(T)740 gives
6.76/6.13 eV, and recent MRCI calculations741 give 6.07/6.29
eV. A systematic study of excited states of butadiene and trans-2-
propeniminium cation has been reported by Lehtonen et al.,742

showing good results in terms of excitation energies at several
coupled cluster levels, except for the two multireference 1Ag

states due to their multireference character as already discussed
above. It is certainly necessary to go beyond selected single-point
calculations and to continue the effort in simulation of optical
spectra similar to the work of Krawczyk et al.743 in order to obtain
a better account of the elusive 21Ag state of butadiene.
3.2.2. p-Benzyne. 1,4-Didehydrobenzene, or p-benzyne, is a

biradical intermediate formed by the Bergman cyclization.744

There have been numerous studies of the p-benzyne singlet
ground state (11Ag);

745,746 however, there have been very few
reports of the characterization of the excited states other than the
low-lying triplet. Extensive MR-CISD, MR-AQCC, and MR-
AQCC-LRT calculations were performed for vertical electronic
excitations, including valence and Rydberg states by Wang
et al.747 The minimal space for describing the biradical is the
CAS (σσ*)2 expansion consisting of the two in-plane singly
occupied orbitals. The active space was extended in the work of
Wang et al.747 to a CAS 88 by including the six π orbitals and six
electrons into the active subspace as well. Rydberg states were
considered by adding one auxiliary active orbital to represent the
Rydberg 3s orbital. Only single excitations were allowed from the
CAS into the auxiliary space. In total, 32 states were included in
the state-averaged MCSCF calculations. The same space was
used as the reference space for the aforementioned MR-CISD
andMR-AQCC computations. A high density of electronic states
was observed in this biradical system due to the fact that there are
more than 17 states within 7 eV of the ground state, including
two 3s Rydberg states. All excitations, except the 21Ag state,
consist primarily of excitations from the π system into the (σ,σ*)
biradical orbitals. Of the 32 states characterized, 15 were
significantly multiconfigurational, including the ground 11Ag

state, providing further evidence for the necessity of a multi-
reference approach for p-benzyne.
3.2.3. Stability of the Allyl Wave Function. Symmetry

breaking in radical systems and Hartree�Fock instability is an
interesting problem and has been investigated over a long period
of time.748 The allyl radical is an outstanding example in this
respect; for a review on ab initio results see ref 749. Stable wave
functions have been constructed on the basis of a CASSCF(33)

calculation750 with the active space consisting of the π orbitals.
Extensive CASSCF and MR-ACPF calculations have been
performed by Szalay et al.751 to compute an accurate allyl
geometry and vibrational force field. The stability properties of
the wave functions employed have been tested by performing
geometry optimizations starting from a symmetry-broken struc-
ture of 2-propenyl-type. Use of the CAS(33) space in CASSCF
andMR-ACPF resulted in a stable wave function with equivalent
CC bonds and C2v symmetry. Increasing the CAS(33) to CAS-
(43) and CAS(53) in the π space of the allyl radical led to
interesting results displaying instability and symmetry-breaking
for some expansions. Optimizing the allyl radical at CASSCF(43)
showed symmetry-breaking, whereas the CASSCF(53) approach
gave again the correct symmetric geometry. This fact was
explained in terms of a near degeneracy of the 2a2 and 3bl π
orbitals used for the extension of the CAS(33) to CAS(53). Both
orbitals are simultaneously needed, and omission of one of them
leads to symmetry-breaking of the CASSCF wave function. The
MR-CISD and MR-ACPF wave functions are always stable, even
with symmetry-broken SCF orbitals.
3.2.4. Automerization in Cyclobutadiene. Cyclobuta-

diene is an interesting molecular system since it is the smallest
neutral organic compound that shows the effect of antiaromati-
city. Another characteristic feature is its strong angular strain.
The D2h ground-state structure is of closed-shell character,
implying that it is well-described by single-reference methods.
However, the transition-state structure has a square geometry
(D4h symmetry) and is an open-shell system, for which a multi-
reference approach is required. The crucial factor determining
the automerization rate is the barrier height for the process
leading from one D2h structure to the equivalent one via the D4h

saddle point (see Figure 1).
Experimental values for the activation energy vary con-

siderably within the range of 1.6�12 kcal/mol.752 Multirefe-
rence coupled cluster calculations including single and double

Figure 1. Energy variation along the automerization path of cyclobu-
tadiene for the ground state and the three lowest excited states.
Reprinted with permission from ref 754. Copyright 2006, American
Institute of Physics.
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excitations augmented by noniterative triplet excitations (MR-
CCSD(T)) based on a two-determinant reference gave a barrier
height of 6.6 kcal/mol.753 Inclusion of zero-point vibrational
energy (ZPVE) lowered this value to 4.0 kcal/mol. CASSCF(44)
calculations result in a barrier of only 2.5 kcal/mol when
ZPVE corrections are applied. MR-AQCC calculations were
performed754 in order to determine the automerization barrier
height and to investigate the properties of the lowest excited
states. Several wave functions were used. At the MCSCF level, a
CAS(44) within the π space was initially chosen. Additionally, a
restricted direct product (RDP) space19 consisting of the four
(σCCσCC*) and four (σCHσCH*) subspaces was used with each
subspace restricted to singlet spin-coupling of two electrons.
Subsequent MR-AQCC calculations used either a CAS(44) as
reference space or a space complemented by all configurations
generated by single excitations from the manifold formed by
the four π and π* orbitals into the eight σ* orbitals (CC and
CH), in addition to all configurations generated by single
excitations from the eight σ orbitals into the two π, two π*,
and eight σ* orbitals. Basis sets up to cc-pVQZ quality466 were
used in single-point calculations, and basis set extrapolations
were also performed. A final barrier height of 6.3 kcal/mol
including ZPE corrections was obtained. Concerning investiga-
tions of excited states, Figure 1 shows that the 13A2g (see also ref
755) and the 11B2g states have square-planar equilibrium struc-
tures. The first triplet state is of particular interest because of
its alleged aromatic character. In a recent investigation756 two
conical intersections between S1/S0 were located, one with ionic
character and the other an open-shell tetra-radical.
3.2.5. Diels�Alder Reaction of Ethylene and 1,3-Buta-

diene. The Diels�Alder (DA) reaction of ethylene and buta-
diene is the prototype of a Woodward�Hoffmann-allowed 4s +
2s cycloaddition (for review see, e.g., ref 757). Both concerted
and nonconcerted mechanisms have been discussed. The con-
certed case involves an aromatic boatlike transition structure,
whereas the nonconcerted case involves a biradical intermediate.
A balanced description of biradical and nonradical structures is a
difficult task. Unrestricted DFT calculations suffer from spin
contamination, and CASSCF calculations lack dynamical elec-
tron correlation.758 ThemultireferenceMøller�Plesset calculations
to second order (MRMP2) performed in ref 758 are expected to
give better balanced results. MR-AQCC calculations allow for
the integration of multireference effects and dynamic electron
correlation, and the geometry optimization capabilities have been
used to study both the present DA reaction759 and the Cope
rearrangement of 1,5-hexadiene.760 In the case of the DA
reaction a CAS(66) was used in CASSCF calculations and as
reference space in the MR-AQCC expansion. Basis sets ranged
from 6-31G* 761 to 6-311G**.762 In summary, the best estimate
for the concerted barrier of 22.2 kcal/mol for the forward
reaction, ethylene + butadiene to cyclohexene, is in good
agreement with the 21.85 kcal/mol deduced by Huang et al.763

from fits to experimental rate constants using variational transi-
tion state theory. Various stationary points on the biradical
region of the PES were investigated. The energy difference of
6.5 kcal/mol between the concerted transition state and the
biradical fragmentation transition state for the anticonformer is
in line with experimental estimates.
3.2.6. Excited States: Energy Surfaces and Conical

Intersections. Vertical electronic excitations starting in the
ground-state minimum and characterized by single excitations
are usually well-described by single-reference methods such as

EOM-CC techniques.764 These methods can also be well-suited
for the description of the neighboring Franck�Condon region,
including excited-state minima. In many cases, however, suffi-
cient energy is available from the vertical electronic excitation to
also reach nearby energy barriers; this allows access to regions of
the PES for which significant multireference character occurs and
where the electronic wave function is significantly more compli-
cated. The chemical intuition guiding many theoretical calcula-
tions for the ground state is of little or no help in this situa-
tion, and flexible, unbiased, general multireference methods are
required. For smaller molecules such as the prototypical ethylene
molecule, extended MR-CISD calculations are feasible and
provide accurate results, but with increasing molecular size these
calculations become increasingly more costly. Because of the
pressing need for information on excited-state surfaces for
significantly larger molecules, less flexible methods must be used
such as MRCI with single excitations (MR-CIS) or state-aver-
aged MCSCF. These methods are significantly faster than MR-
CISD, and enable interesting applications in many areas. How-
ever, it must be noted that the missing dynamical electron
correlation and the ambiguities of selecting the proper active
orbital space may lead to nonnegligible errors.
3.2.6.1. Ethylene: Energy Surfaces and Conical Intersec-

tions. The ethylene molecule plays a fundamental role in the
understanding of photoisomerization processes and, in particu-
lar, the ultrafast energy conversion through nonadiabatic tran-
sitions. Therefore, quantum chemical calculations on vertical
excitations and of important sections of the PESs have a long
history.765�767 The vertical excitation to the V state of ethylene
has already been discussed previously. The primary interest in the
excited-state energy surface concentrated on the torsion around
the CC bond; this torsion leads to a degeneracy between the V
and Z valence excited states at 90�768 but not to an intersec-
tion with the electronic ground state. The first global analysis
of modes that lead excited-state ethylene to intersections with
the ground state was made by Ohmine769 and Freund and
Klessinger.770 In those investigations, the importance of hydro-
gen migration and of CH2 pyramidalization for reaching the
S1/S0 intersection was demonstrated. Later, Ben-Nun and
Martínez771 performed extensive studies on the structures and
stabilities of the important conical intersections: the ethylidene,
twisted/pyramidalized, and twisted/H-migration intersections.
They used SA-CASSCF(74) and single-point ic-MR-CISD cal-
culations using the active space of the CASSCF calculation as
reference wave function. State-averaging was performed in the
CASSCF calculations over two and three states, respectively. The
aug-cc-pVDZ basis set466,772 was used, allowing also the descrip-
tion of Rydberg states along additional one-dimensional poten-
tial energy searches. Optimization of the ethylidene and twisted/
pyramidalized intersections led to true minima on the intersec-
tion seam (MXSs), whereas for the twisted/H-migration struc-
ture only a representative structure on the seam was given. The
first two structures were found to be similar in energy, whereas
the latter one was significantly higher in energy. Comparison
of the energy difference between S1 and S0 states computed at
the CASSCF level (at which the MXS optimization was
performed) and at MRCI levels suggest possible inconsisten-
cies. The degeneracy of the S1/S0 states is fulfilled at the
CASSCF level by virtue of theMXS optimization performed at
this level. The MR-CISD single-point calculations using the
CASSCF MXS structures show small splittings for the ethy-
lidene and twisted/pyramidalized MXSs, but larger splittings
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in the case of the twisted/H-migration conical intersection
structure.
MR-CISD calculations have been used by Barbatti et al.773 to

optimize MXSs for ethylene consistently at the correlated level.
These investigations went beyond standard CAS reference
spaces which are limited, for practical reasons, to small active

orbital spaces. In addition to the (ππ*)2 CAS space, a RDP space
was constructed for the σ orbitals. The RDP space was composed
in this case of 10 orbitals grouped in five subspaces, one for each
σ bond, i.e., four [(σσ*)CH] pairs and one [(σσ*)CC] pair. Each
(σσ*) subspace was restricted to singlet pairing. The MCSCF
calculation based on the RDP wave function resulted in localized
orbitals very similar to those obtained in generalized valence
bond (GVB) calculations.774 The same RDP expansion space
was used as the reference space in the subsequent MR-CISD
calculations. Basis sets used range from aug-cc-pVDZ to aug0-
cc-pVTZ quality, where the prime indicates that the augmen-
ted f functions on the carbon atoms and the augmented d
functions on the hydrogen atoms were omitted. Comparison
of optimized geometries computed with different methods
and basis sets (see Figure 2) showed that the (ππ*)2 CAS
reference space and the aug-cc-pVDZ basis represented a
good compromise between accuracy and efficiency for calcu-
lations of the valence regions relevant for the photodynamics
within the S0, S1, and S2 states. The topology of the seam
was investigated as well. It has a complex structure in which
all conical intersections presently known for ethylene are
connected.
3.2.6.2. Heterosubstitution in Ethylene. As shown by Michl

and Bona�ci�c-Koutecký775 using two-electron two-orbital model
calculations, the gap between the S1 and S0 states in the
orthogonal structure narrows as the electronegativity difference
between the two central atoms diminishes. This behavior has
important consequences on the photochemical deactivation
mechanism to the ground state because the pyramidalization
and H-migration mechanisms should lose importance relative to
ethylene.
Substitution of one carbon atom in ethylene by silicon leads to

silaethylene. SA-CASSCF and MR-CISD calculations were
performed776 to investigate vertical excitations, conical intersec-
tions, and potential energy curves for selected coordinates. To
take valence and Rydberg states into account, a (ππ*)2 CAS was
augmented with an auxiliary space describing the 3s and 3p
Rydberg orbitals. Only single excitations were allowed into the
auxiliary space. This expansion space was used in SA-MCSCF
calculations and as the reference space for the MR-CISD expan-
sion. At the MCSCF level, the Rydberg states were lower in
energy than the π�π* state, whereas at the MR-CISD and MR-
CISD+Davidson levels the π�π* state was the lowest excited
singlet state. Optimization of conical intersections showed—as
expected—the twisted orthogonal structure to be a MXS.
Twisting of silaethylene around the C�Si bond leads directly
to the MXS.
Isoelectronic substitution of a carbon atom in ethylene with a

nitrogen cation leads to the methaniminium cation CH2NH2
+.

This is an interesting molecule since it is the first one in the series
of protonated Schiff bases that are used as models for retinal, the
chromophore of the opsin visual protein.777 Bona�ci�c-Koutecký
et al.778 applied the two-electron two-orbital model to the
methaniminium cation and verified the orthogonal MXS struc-
ture by means of direct-CI779 and MRD-CI calculations. The
calculations showed that at least two excited singlet states are
involved, a σπ* and aππ*. In the vertical excitation, the σπ* state
is energetically lower than the ππ* state. Torsion around the CN
bond leads directly to a crossing with the ground state. This
intersection has also been investigated in a qualitative way780

using the Longuet�Higgins phase change theorem. The vertical
excitations in the methaniminium cation were also investigated

Figure 2. Selected geometrical parameters for themainC2H4 structures
studied in the present work optimized at theMR-CISD/SA-3-CAS(22)/
aug-cc-pVDZ level. Values in parentheses and in square brackets were
obtained at the MR-CISD/SA-3-RDP/aug-cc-pVDZ and MR-CISD/
SA-3-RDP/aug-cc-pVTZ levels, respectively. For the twisted-pyramida-
lized MXS, the pyramidalization angle b is 104.7� (103.5�) [104.4�].
Distances are given in angstroms and angles in degrees. c.i. stands for
conical intersection space. Reprinted with permission from ref 773.
Copyright 2004, American Institute of Physics.
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by Du et al.781 with a selected MR-CISD approach, confirm-
ing the energetic ordering of the above-mentioned σπ* and
ππ states. CASSCF and MR-CISD calculations performed by
Barbatti et al.782 identified the CN stretching coordinate as another
important degree of freedom in addition to the CN torsion.
Calculations were performed at the SA-CASSCF(46) level that
included three states into the state-averaging procedure. The
same 46 expansion space was used as reference in MR-CISD
calculations with cc-pVDZ and cc-pVTZ basis sets. Starting in
the Franck�Condon point (see Figure 3), stretching of the CN
bond leads to a crossing between the S2(π�π*) and S1(σ�π*)
states at planar geometries. Torsion around the CN bond results
in the familiar intersection between S1 and S0 states. As discussed
in what follows, dynamics calculations are necessary to obtain an
adequate picture of the true photodynamical processes.
Substitution of one of the hydrogen atoms of ethylene by

a heteroatom also creates a polar π bond. For example,
MR-CISD calculations show783 that twisting around the CC
bond in fluorethylene leads to a conical intersection at the
twisted orthogonal structure, as was the case for silaethylene
and the methaniminium cation. Analogous calculations have
been performed on the chiral (4-methylcyclohexylidene)
fluoromethane.784

3.2.6.3. Formaldehyde. In addition to Rydberg transitions, at
least three valence excited states (n�π*, σ�π*, and π�π*) are
necessary for the characterization of the vertical electronic
excitation spectrum of formaldehyde. The interactions between
the π�π* and Rydberg states have been investigated in great
detail in the benchmark MRD-CI calculations of Hachey et al.785

Because of these strong interactions, the π�π* state appears to
be elusive and difficult to characterize experimentally. The work
described in ref 786 shows how a larger set of electronic states can
be computed simultaneously at the MR-CISD, MR-CISD+Q,

and MR-AQCC levels. Five valence states (ground state, n�π*,
σ�π*, π�π*, and n2�π*) and 10 Rydberg states, n�(3s3p3d)
and π�3s, were computed using an MRCI reference space in
which the Rydberg states were represented by an auxiliary orbital
subspace into which only single excitations were allowed. Standard
MR-CISD andMR-AQCC calculations were performed, and the
interactions of valence and Rydberg states with the CO bond
stretch were analyzed. On the basis of these results, EOM-CCSD
investigations were subsequently performed,787 computing one-
dimensional potential curves for all vibrational normal modes,
two-dimensional (involving the CO stretch and HCH bend
modes), and three-dimensional (including additionally the out-of-
plane mode) energy surfaces. Using these surfaces, wave packet
dynamics simulations were performed to compute the UV
spectrum. The computed spectrum reproduces well the experi-
mental data in the 7�10 eV region, including highly irregular
features due to strong interactions between the π�π* state and
the nearby Rydberg states.
The structure of the π�π* state is also of interest for other

reasons. The MRD-CI 785 and CASPT2 788 methods predict a
planar structure for this state. However, it was later shown789 that
the σ�π* andπ�π* states cross and, in combination with a CH2

out-of-plane bend, lead to a conical intersection. As a conse-
quence, the planar π�π* structure is a saddle point rather than a
true minimum. Full geometry optimization of this state leads to
strong deviation from planarity and strong mixing of the σ�π*
and π�π* states.
In contrast to the π�π* state, the S1(n�π*) state is spectro-

scopically well characterized.790 The photodissociation dy-
namics of formaldehyde with respect to the S1 state has been
investigated intensively (see, e.g., refs 731 and 791�798).
There are two photodissociation products: H2 + CO and H +
HCO. The molecular photoproducts are exclusively obtained
from dissociation on S0, whereas the radical fragments can
be derived from T1 and S0. The dynamics simulations of the
molecular channel have been performed on the S0 surface
starting at the corresponding transition state. Beyond the
standard dissociation process that was observed in earlier
investigations, an interesting additional “roaming” hydrogen
atom process was found.793 Along this pathway the molecular
transition state is avoided and radical formation is initiated.
However, this does not lead to full dissociation because of
insufficient energy. Instead, the two fragments orbit around
each other, eventually resulting in hydrogen abstraction and
leading to H2 + CO.
Explanation of the dynamics of the radical products is sig-

nificantly more difficult since it involves the three electronic
states S0, S1, and T1. Beyond this fact, long simulation times are
required to describe the singlet�triplet transitions. Straightfor-
ward on-the-fly dynamics is, therefore, precluded in spite of the
small size of the formaldehydemolecule. Instead, global fits to the
potential energy surfaces have been developed. Some examples
include the investigations on the S1/S0 conical intersection

795

using density functional theory and CASSCF calculations, and
the calculations on the S1/T1 intersection

796,797 based on the
EOM-CCSD and MRCI methods. Quasiclassical trajectory
calculations have been performed that exclude the S1/S0 inter-
section because of energetic reasons797 and focus instead on the
S1/T1 intersection. Wavepacket simulations involving both the
S1/T1 and S1/S0 crossings using the CASSCFmethod have been
reported.798 Despite the fact that existing investigations have led
to important insight into the formaldehyde S1 photodissociation,

Figure 3. Potential energy surfaces for the methaniminium cation in
terms of the torsional and CN stretching coordinates. The red arrow
indicates the Franck�Condon excitation.
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a comprehensive understanding based on accurate dynamics
simulations has yet to be proposed.
3.2.6.4. Excited States of DNA Bases. The study of the UV

spectra, conical intersections, and photophysical deactivation
paths for the DNA and RNA bases leads into the fascinating
field of the photostability of DNA. The lowest electronic excita-
tions are characterized as valence n�π* and π�π* states with
varying energetic order depending on the particular nucleobase
investigated, but also depending on the computational method
selected. Because of the increased molecular size of the nucleo-
bases in comparison to the substituted ethylenes discussed
above, MRCI calculations of comparable accuracy are difficult
to perform because of the drastically increased computer times.
The quantum chemical calculations on excited states presented
in the literature are, therefore, dominated by SA-CASSCF and
CASPT2 calculations. MR-CISD calculations suffer from over-
shooting certain π�π* states as already observed for the V state
of ethylene. These errors are significantly reduced for the
strongly distorted MXS structures, and therefore, MR-CISD
has been used mostly for verification purposes of such structures.
MR-CIS (MR-CI plus single excitations) has been applied with
the goal of compensating for inadequacies of the state-averaged
orbital-optimization procedure, and in selected cases this re-
sulted in significant improvements of excitation energies.
UV spectra, energy minima in excited states, conical intersec-

tions, and photodeactivation paths have been investigated in
detail by several groups.799�804 Energy minima have been
located in both the S1 and S2 states with usually small energy
barriers of a few tenths of an electronvolt. Reaction paths crossing
these barriers lead, in most cases, to conical intersections at
strongly distorted, ring-puckered structures. As an example,

Figure 4 shows several reaction paths and types of MXS
structures that have been computed for adenine in ref 803.
The calculations were performed at the SA-3-CASSCF(1012)
and MR-CIS(56) levels where the CAS(56) reference space was
obtained bymoving for all stationary points andMXSs all orbitals
with natural occupations larger than 0.9 to the doubly occupied
space and smaller than 0.1 to the virtual space. The Cremer�
Pople parameters805 have been used in Figure 4 to describe
systematically the ring-puckered conformations. This figure
illustrates nicely the multitude of different pathways. Assuming
that the photodynamics starts in the lowest π�π* state, the most
likely reaction paths lead to the 2E and 6S1 MXSs.
Other examples of successful application of MRCI methods

can be found in the calculations performed by Matsika on
uracil801 and Kistler andMatsika on cytosine.806,807 It was shown
that MRCI calculations on molecules of the size of nucleobases
are possible. The calculations are based on a SA-CASSCF(912)
calculation providing the orbitals for the subsequent MRCI
calculation. The nine orbitals are composed of seven π, a lone
pair on one N atom (nN), and a lone pair on the O atom (nO).
Three different MRCI expansions were constructed in ref 806.
The first (MRCI1) included only single excitation CSFs gener-
ated from the CAS orbitals. This low-level expansion was used for
MXS searches. The next two expansion sets incorporated
dynamical correlation of the σ electrons with the active π and
nonbonded electrons. This type of excitation has been shown to
be important for the description of excited states of organic
molecules.734,735 In the MRCIσπ1 expansion, only single excita-
tions were included. The third method (MRCIσπ2) includes
single excitations from the σ orbitals and the oxygen lone pair,
plus single and double excitations from the CAS into the virtual

Figure 4. Paths connecting the ground-state minimum geometry to the puckered MXSs of adenine. The MXS geometry is shown in each case.
The coordinate d describes the mass-weighted Cartesian distance between a given geometry and the ground-state minimum. Reprinted from ref 803.
Copyright 2008 American Chemical Society.
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orbitals. The cc-pVDZ basis set was used. These calculations
demonstrate the flexibility in choosing MRCI expansons, and
how this can be largely decoupled from theMCSCF step. Table 3
collects vertical excitation energies computed in ref 806 for the
three expansions. For comparison, an experimental value avail-
able for aqueous solution808 is given as well. The results show
that the bright π�π* state is lowest, followed by two n�π*
states. See ref 806 for details of the geometries and of the
energetic stability of the S1 minima and conical intersections.
Using these MRCI methods, three-state conical intersections
could also be located by a three-state seam search.807

Cytosine MXS structures have also been optimized at SA-4-
CASSCF(1014) and MR-CISD(56) level809 using the 6-31G*
basis. The CASSCF and MR-CISD optimized geometries are
found to be rather similar.
3.2.7. Radical�Radical Reactions. Radical�radical reac-

tions present a special challenge to electronic structure theory.810

These reactions typically have no barriers, and hence the
dynamical bottlenecks for these reactions usually occur at large,
2�4 Å, separations between the two radical centers. It is well-
known that Hartree�Fock wave functions are poorly suited to
this task; a restricted Hartree�Fock wave function introduces
spurious ionic character at large radical�radical separations, and
an unrestricted Hartree�Fock wave function introduces signifi-
cant spin contamination. Multireference methods, both MRCI
and CASPT2, have been shown to yield accurate results for a
wide variety of radical�radical reactions including combination
reactions,811�814 disproportionation reactions,815,816 and roam-
ing radical reactions.793,817�820

3.2.8. Bond Length Comparisons. Experimental Re values
were compared with computed Re values for 20 molecules using
three multireference electronic structure methods, MCSCF,
MR-CISD, and MR-AQCC by Shepard at al.369 Three correla-
tion-consistent orbital basis sets were used, along with CBS
extrapolations, for all of the molecules. These data complement
those computed previously by Helgaker et al.821 and Bak et al.822

with SR methods. The MCSCF wave function expansions were
all of the direct-product form, including GVB-RCI and CASSCF
expansions. Several trends were observed. The SCF Re values
tend to be shorter than the experimental values, and the MCSCF
values tend to be longer than the experimental values. These
trends were attributed to the ionic contamination of the SCF
wave function and to the corresponding systematic distortion of
the potential energy curve. Upon orbital basis improvement, the
SCF values tend to shorten even further from the experimental
values, while theMCSCF values shorten toward the experimental
values. For the individual bonds, the MR-CISD Re values tend to
be shorter than the MR-AQCC values, which in turn tend to be
shorter than the MCSCF values. Compared to the previous SR
results, the MCSCF values were roughly comparable to the MP4

and CCSD methods, which is more accurate than might be
expected due to the fact that theseMCSCFwave functions include
no extra-valence electron correlation effects. This suggests that
static valence correlation effects, such as near degeneracies and the
ability to dissociate correctly to neutral fragments, play an im-
portant role in determining the shape of the potential energy
surface, even near equilibrium structures. TheMR-CISD andMR-
AQCCmethods predictRe values with an accuracy comparable to,
or better than, the best SR methods (MP4, CCSD, and CCSD-
(T)), despite the fact that triple and higher excitations into the
extra-valence orbital space are included in the SR methods but are
absent in the multireference wave functions. The computed Re
values using the multireference methods tend to be smooth and
monotonic with basis set improvement.
Full-CI wave function Re values were compared for some of

the molecules in this study. This allows some direct comparisons
among the various SR and MR methods without interference
from experimental uncertainties. Overall, the MR-CISD and
MR-AQCC Re values agree very well with the corresponding
full-CI Re values, and the mean errors and standard deviations for
these methods are better than for any of the SR methods. The
MR-AQCC method is seen to have the smallest mean error and
smallest standard deviation of all of the methods. The MCSCF
statistics are seen to be surprisingly good, supporting the premise
that valence correlation effects play a larger role than expected in
determining the shape of potential energy surfaces, even near
equilibrium structures.
The variational nature of the MR-SDCI and MR-AQCC

energies allows theHellmann�Feynman theorem to be exploited
in the analytic energy gradient computations associated with the
molecular structure optimizations. This is seen to result in a very
efficient analytic energy gradient computation for a wide range of
reference wave function expansion dimensions and for a wide
range of orbital basis sets. The timings for these calculations show
the practical advantage of using variational wave functions for
which the Hellmann�Feynman theorem can be exploited.

3.3. Applications in Detail: Nonadiabatic Dynamics
The availability of analytic energy gradients and nonadiabatic

coupling vectors opens the way to mixed quantum-classical
dynamics simulations (see, e.g., ref 365), for which Tully sur-
face-hopping is probably the most popular form.730 For the
purpose of this review it is of interest to note that these
calculations are performed on-the-fly,731 which means that at
each time step of the classical dynamics a full quantum chemical
calculation is performed, including energy gradient and coupling
elements. The advantage of this approach is that all internal
degrees of freedom can be taken into account without any
restrictions since the analytic energy methods automatically
provide the complete derivative vectors along all Cartesian
coordinates. Thus it is not required to preselect any active
internal coordinates as is necessary when energy grids have to
be calculated. The drawback of the on-the-fly method is the large
computational demand, which is even more pronounced by the
fact that a batch of trajectories must be computed in order to
obtain statistically useful results. Thus, when ab initio methods
are used for the quantum chemical part of the calculation,
simulation times are usually restricted to ultrafast processes in
the order of a few picoseconds. Ab initio multiple spawning
(AIMS)771 is an interesting alternativemethod that combines the
rigor of quantum dynamics with computational efficiency com-
parable to surface-hopping.

Table 3. S1 to S3 Excitation Energies
a of Cytosine Computed

at Three MRCI Levels

method S1(π�π*) S2(nN�π*) S3(nO�π*)

MRCI1 b 5.101 (0.067) 5.394 (0.002) 5.888 (0.001)

MRCIσπ1 4.941 5.131 5.625

MRCIσπ2 5.136 5.289 5.927

expt 808 4.66
aData are from ref 806. Values are in electronvolts. bOscillator strengths
are given in parentheses.
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3.3.1. Ethylene Photodynamics. The study of the photo-
chemistry of ethylene gives insights into basic chemical processes
and at the same time serves as a prototype for studying properties
of larger molecules. The structure of the conical S1/S0 intersec-
tions, the topology of the intersections seam, and the modes
leading to the seam have been discussed previously in section
3.2.6.1. Extensive photodynamical investigations have been
performed by several groups. AIMS calculations carried out at
the CASSCF(22) level771,823 nicely demonstrate the combined
torsional and pyramidalization character of the deactivation
paths leading from the Franck�Condon region to the conical
intersection. A lifetime of 180 fs has been deduced from these
simulations. Wavepacket dynamics calculations based on a fitted
potential described in six coordinates (CC torsion, CC stretch,
CH2 scissoring, and pyramidalization)824 show a strong coupling
between the torsion and the CC stretching mode, along with a
significant bottleneck in the slow activation of the pyramidaliza-
tion, leading to an overall slow population transfer to the ground
state. Although these simulations illustrate the proper deactiva-
tion paths qualitatively, they predict lifetimes that are much too
long compared to the 20�40 fs values obtained in femtosecond
pump�probe experiments.825,826

Surface-hopping dynamics using semiempirical CI methods
are an interesting alternative to the above simulations based on
ab initio methods. Granucci et al.349 used the MINDO/3
method827 and Fabiano et al.828 used the orthogonalization-
corrected Hamiltonian (OM2) method.829 These investigations
confirm the torsional and pyramidalization modes as the main
deactivation mechanism, similar to the observations made in the
ab initio simulations described before. Interestingly, much short-
er lifetimes are reported in these investigations: 50 fs in the
MINDO/3 study and 70.8 fs in the OM2 calculations. Semi-
empirical dynamics performed afterwards at the AM1 level830

with reparameterization of the original AM1 parameters based
onMRCI calculations led again to larger lifetimes of 105�139 fs.831

Closer analysis of these dynamics indicates832 also the importance of
the H-migration and ethylidene regions of the S1/S0 intersection
seam for the photodeactivation. A possible reason for the
discrepancies between theoretical and experimental predictions
was proposed:771,831 the energy of the probe pulse for ionization
was not sufficient for the whole course of the dynamics, and the
experiments were actually giving only the time to leave the
observation window rather than that to return to the ground
state. Multiphoton experiments,826,833 however, have ruled
out this explanation and reinforced the previous experimental
conclusions.
Recent AIMS calculations performed for ethylene, using

analytic multistate perturbation theory to second-order (MSPT2)
energy gradients834 and numerical finite differences for the
nonadiabatic coupling vector,835 result in a lifetime of 89 fs. This
value is a significant improvement over the previous ab initio
results and shows the sensitivity of the lifetime with respect to the
computational method. Even more accurate calculations are
certainly necessary to resolve completely the puzzle of the
ethylene lifetime.
3.3.2. Ethylene Heterosubstitution: Effect on Photody-

namics. The fact that heterosubstitution in ethylene promotes
the S1/S0 crossing at the twisted orthogonal structure (see
discussion above) may lead to the expectation that the corre-
sponding photodynamical processes should be simpler than
those observed for ethylene. The central torsional mode should
lead the dynamics directly to the conical intersection and thus to

the ground state. However, the situation is not really that
simple.836 The first reason follows from the fact that not only
the torsional mode but also the central stretching coordinate
defines the intersection space, and a specific combination of
these two modes is required to reach this region. Normally, this
will not be the case at the beginning, and the dynamics will lead
initially to a finite gap (avoided crossing region) rather that to a
crossing (intersection). Usually, several torsional cycles will be
required to reach the intersection seam. E.g., in silaethylene the
90� structure is reached in 10�20 fs. However, the lifetime
computed from surface-hopping dynamics using a MR-CISD(22

reference) wave function is found to be 124 fs.837 Since the
molecule remains in the excited state longer, sufficient time
is available to activate additional modes. Consequently, other
regions of the crossing seam, different from the ones belonging to
twisted configurations, may actually be accessed during the
return to the ground state. This situation is not unique to the
combination of torsional and stretching modes, but rather occurs
in many other situations such as the ring puckering found
important for the deactivation of DNA nucleobases.
The second reason that deviations from the simple rotor

model occur is competition with other processes. Such cases
were observed in silaethylene837 and methaniminium cation.782

While one group of the trajectories follows the torsional paths,
another undergoes strong stretches of the central bond connected
with a simultaneous pyramidalization of both terminal groups.
3.3.3. Adiabatic and Nonadiabatic Dissociation of the

Ethyl Radical. The dynamics of the dissociation of the ethyl
radical following excitation to the ~A state has been studied by
Hostettler et al.838 As Figure 5 shows, adiabatic dissociation (2)
produces excited-state ethylene and H in competition with
nonadiabatic dissociation (1a). Alternatively, hot ground-state
radicals can be generated followed by unimolecular dissociation
(1b). For the nonadiabatic dynamics calculations, the SA-2-
CASSCF(43) and MR-CISD(43 reference) methods have been
used. To correctly describe the dissociation of the ethyl radical
into ethylene and hydrogen atom, the four active orbitals contain
three valence orbitals (two 2p orbitals on the carbon atoms and
the 1s orbital on the departing hydrogen atom, forming the
nonbonding singly occupied molecular orbital and the bonding
and antibonding σ orbitals) and the 3s Rydberg orbital. The 6-31
++G(d,p) basis set was used. A set of 4956 trajectories was run at
the SA-CASSCF level for amaximum of 7 ps, and 245 trajectories
were run at the MR-CISD level for a maximum of 1 ps.
When comparing the dynamics results obtained with the two

Figure 5. Schematic energy level diagram for the dissociation of ethyl
radical C2H5fC2H4 +H following excitation to the ~A-state. Reprinted
with permission from ref 838. Copyright 2009, American Institute of
Physics.
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methods, the changes in the branching ratio between adiabatic
and nonadiabatic dissociation are illustrative in showing the
effect of the computational level. At the SA-CASSCF level, only
about half of the trajectories dissociate nonadiabatically; themajority
of the other trajectories followpath 2. At theMRCI level almost 70%
of the trajectories follow the nonadiabatic path, and the remainder is
equally split between paths 1b and 2. A possible explanation for the
dramatic difference in the branching ratio between the two levels of
theory comes from the computed dissociation energy for the
C2H4(~A) + H channel that is too low at the SA-CASSCF level
but agrees well with experiment at the MRCI level.
3.3.4. Photostability of DNA/RNA Nucleobases. All

nucleobases show ultrafast radiationless decay to the ground
state within a few picoseconds. These ultrafast deactivation
mechanisms and their related photostability are of great interest
since they are considered to contribute to a natural chemical
defense of the genetic code against damaging photochemically
induced processes in reactive excited states. The structure and
energetic location of the conical intersections responsible for
these ultrafast processes have been discussed previously. To-
gether with ultrafast time-resolved spectroscopy,839,840 these
methods have provided a high degree of detail in the character-
ization of internal conversion processes, suggesting ring pucker-
ing as one major structural theme for the photodeactivation of
nucleobases. Photodynamical simulations have been performed
at the ab initio level using surface-hopping802,841�844,809,845 and
AIMS846,847 techniques for investigating the individual bases. A
summarizing survey was presented with the goal of extracting the
common pattern of the deactivation dynamics.848 Analysis of the
dynamics simulations shows that the purine bases, adenine and
guanine, follow a direct decay proceeding diabatically on the
π�π* energy surface. These two bases possess the shortest gas-
phase lifetimes among all nucleobases. In contrast, the pyrimidine
bases display much richer deactivation characteristics where also the
n�π* state is involved and trapping in S1 minima may occur.
In addition to the study of the five nucleobases, the dynamics of

related compoundswhich serve asnucleobasemodels, such as4-amino-
pyrimidine,849 and 2,4-diaminopyrimidine,850 has been performed.
This collection of examples should demonstrate the range of

applications available. Advances in the parallel performance of
quantum chemical codes and implementation of quantum me-
chanical/molecular mechanics (QM/MM) methods, in combi-
nation with MCSCF and MRCI methods (see, e.g., refs 851 and
852) will lead to significantly enhanced possibilities allowing
more realistic applications in many important fields of research
where multireference theory is the method of choice.

3.4. Role of the Molecular Orbital Basis
The use of advanced SR andMR electron correlationmethods

is invariably tied to the optimization of the one-particle basis in
terms of molecular orbitals separate from the optimization of the
N-electron basis expansion coefficients (Slater determinants,
CSFs). With the exception of full-CI, which by construction
treats all MOs on the same footing, this introduces an implicit
dependence on the choice of molecular orbitals of the results
from the electron correlationmethods. In the area effectively covered
by SRmethods, due to the formalism there is usually no choice of the
MO basis, which has unfortunately led to the misconception that a
suitable set of MOs can be taken for granted if they satisfy the basic
requirement to cope with possible near-degeneracy effects.

For about 40 years, it has been well-known that natural orbitals
derived from some electron correlation treatment lead to a more

compact expansion of the CI wave function.1,6,9,10 However, the
iterative improvement of the NO basis does not always
converge,853 so that this procedure, although quite helpful, does
not lead to a uniquely defined orbital basis. Thus, the effort to
compute good approximations to the full-CI limit depends on
the choice of the molecular orbitals, and, in the early days of
quantum chemistry, natural orbitals (or related quantities such as
PNOs15,16) have been used to reduce the size of the N-particle
space while keeping the incompleteness error small (e.g., the
PNO�CI method205).

Of conceptual importance is the fact that HF wave functions
tend to overestimate the ionic character of a chemical bond. This
leads, e.g., to systematically overestimated harmonic vibrational
frequencies that are typically corrected by empirical methods and
basis set dependent scaling factors.854 More advanced scaling
techniques employ multiple scaling factors depending upon the
internal coordinates (e.g., ref 855). The increased ionic character
is also reflected in the shape of the occupied canonicalHForbitals, so
that subsequent electron correlation treatments must correct for this
orbital bias. In a recent study it has been pointed out that even for
typical single-reference cases, high-level electron-correlationmethods
such as CCSD(T) cannot completely compensate for this defect if
the results are extrapolated to the CBS limit.369 For the same set of
molecules, MCSCF/MRCI or MCSCF/MR-AQCC did not suffer
appreciably from ionic contamination.

The notoriously problematic π�π* singlet states in polyenes,
carbonyl compounds, and other conjugated or aromatic systems
exhibit ionic character, which recently has been shown to be
systematically overestimated even at the MCSCF/MRCI level of
theory when the active space is not flexible enough to incorporate
σ�π polarization effects.734

In a basis of orthonormal MOs, a (ππ*)2 CASSCF calculation
can represent three singlet and one triplet states of Ag and B1u
symmetry (using D2h irrep labels). If cπ and cπ* denote arbitrary
coefficients subject to the orthonormalization constraint (cπ)

2 +
(cπ*)

2 = 1, these states are (ignoring the core electrons)

1Ψ1Ag
ðNÞ ¼ cπjππj þ cπ�jπ�π�j ð222Þ

2Ψ1Ag
¼ cπ�jππj � cπjπ�π�j ð223Þ

1Ψ1B iu
ðVÞ ¼ 1ffiffiffi

2
p ðjππ�j þ jπ�πjÞ ð224Þ

1Ψ3B iu
ðTÞ ¼ 1ffiffiffi

2
p ðjππ�j � jπ�πjÞ ð225Þ

In a basis of orthonormalized atomic p orbitals centered on the two
carbon atoms (pA,pB), the same wave functions can be written as

1Ψ1Ag
ðNÞ ¼ 1ffiffiffi

2
p ðcπ þ cπ�ÞðjpAp̅Aj þ jpBp̅BjÞ

þ 1ffiffiffi
2

p ðcπ � cπ�ÞðjpAp̅Bj þ jp̅ApBjÞ ð226Þ

2Ψ1Ag
¼ 1ffiffiffi

2
p ðcπ� � cπÞðjpAp̅Aj þ jpBp̅BjÞ

þ 1ffiffiffi
2

p ðcπ þ cπ�ÞðjpAp̅Bj þ jp̅ApBjÞ ð227Þ

1Ψ1B1u
ðVÞ ¼ 1ffiffiffi

2
p ðjpAp̅Aj � jpBp̅BjÞ ð228Þ

1Ψ3B1u
ðTÞ ¼ 1ffiffiffi

2
p ðjpBp̅Aj � jpAp̅BjÞ ð229Þ
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The two singlets of Ag symmetry are complementary mixtures of
ionic and covalent VB structures, while the 1B1u state and its

3B1u
counterpart are represented by purely ionic and covalent VB
structures, respectively. Hence, state-specific CASSCF calcula-
tions with the minimum active space yield widely different π and
π* MOs for the ionic V state as opposed to the predominantly
covalent N and T states. Constraining the occupied σ core
orbitals to be inactive in the CASSCF optimization prevents
them from being properly polarized for the ionic configurations as
both components share the same core. To allow for σ polariza-
tion, σ to σ* single excitations relative to the |(core)ππ̅ | and
|(core)π*π̅*| determinants are required. The neglect of this
polarization results in π and π* MOs that are too diffuse, and
the ionic components are destabilized.736

The vertical excitation energy of the V state has been system-
atically overestimated by∼0.25 eV and a too diffuse character is
predicted by a wide variety of methods focusing on extending the
N-particle expansions (CI,853,733,651,856 EOM-CCSD,740 and
CASPT2 739), which is unfortunately slowly convergent. The
observation of better results with more compact basis sets853 is a
direct consequence of preventing too diffuse orbitals by basis set
constraints. Focusing instead on the MO basis leads to the
aforementioned inclusion of σπ polarization, either as furnishing
the final results857 or as aMO basis optimization step followed by
large-scale MRCI for quantitative predictions.735 A third possi-
bility involves QDPT or intermediate Hamiltonian theories,858

constructing a model space from multiple valence states (V state
and states representing σπ polarization effects) such as MS-
CASPT2859 or QD-PC-NEVPT2,334,736 which also corresponds
to an extension of the N-particle space. Results that are in good
agreement with ref 735 have been presented with eight reference
states using the QD-PC-NEVPT2 approach if limited to valence
excited states.

For the standard 22 CASSCF calculations for ethylene, in
addition to the neglect of σ�π polarization effects, the now
energetically too high ionic V state mixes with a near-degenerate
low-lying Rydberg state of the same symmetry, which further
increases the diffuse character of the V state. The degree of
mixing with the Rydberg state depends very much on the choice
of the active space, since it is primarily an artifactual near-
degeneracy effect (experimental data indicate a valencelike V
state). It is important to include σ�π polarization and dynamic
π�π* correlation during the MO optimization step in order to
suppress both sources of error. QD-PC-NEVPT2 fails in the
presence of Rydberg valence state mixing because a very large
number of reference states would be required to correct the large
diffuse character of the V state. Optimizing the orbitals with large
RASSCF expansions including sufficient σ�π and ππ* correla-
tion leads also to qualitatively correct orbitals for the V state, and
subsequent single-state PC-NEVPT2 results are in good agree-
ment with extended MR-AQCC and MR-CISD results. These
findings reemphasize the importance to closely inspect and
analyze the optimized molecular orbitals. The longer polyenes are
less problematic with respect to π�π* excitations, and a similar
procedure leads to good agreement with the experimental data.738

The simultaneous treatment of Rydberg and valence excited
states is of considerable importance in dealing with the photo-
physics of many aromatic heterocycles and carbonyl compounds.
In particular, formaldehyde has been thoroughly investig-
ated785�789 (cf. section 3.2.6.3); upon elongating the CdO
double bond, the π�π* state crosses four different Rydberg
states. This has a profound impact on the observed electronic

spectrum and is an almost ideal example for intensity borrow-
ing.787 In terms of efficiency, it is desirable to construct an MO
basis in which each MO describes either a diffuse Rydberg or a
compact valence orbital.786 Since Rydberg states are essentially
singly charged molecular cations plus a single electron in a diffuse
orbital, it is sufficient to choose reference spaces with at most a
single electron in a Rydberg orbital. Although such a CSF space is
not much larger than the corresponding CSF space for the
valence-state correlation treatment, it is flexible enough for
arbitrary valence/Rydberg state mixing within the N-particle
basis. Even with sophisticated CSF spaces at the MCSCF level,
it will not be possible to always disentangle Rydberg/valence
orbital mixing at the orbital optimization level; the consequence
is the requirement of extremely large CSF spaces in order to
suppress artifacts. To this end, response methods display the
desirable feature that it is sufficient to optimize the MO basis for
the reference state only. Since the ground state is well-separated
from any Rydberg states, it is easier to suppress the undesirable
valence/Rydberg mixing at the orbital optimization level.

4. SUMMARY AND CONCLUSIONS

We have discussed the relevant aspects of the MCSCF and the
MRCI methods which are generally applicable procedures to
compute approximations to the electronic Schr€odinger equation.
These multireference methods share the important asset that
they are not inherently tied to some restricted reference state,
and thus they are applicable to arbitrary electronic states and
molecular geometries. The variational nature of these methods
greatly simplifies the formulation and the implementation of
analytical gradients and nonadiabatic coupling vectors. While
MCSCF is primarily used to optimize the one-electron basis
functions and to describe static electron correlation effects due to
nearly degenerate electronic states, the subsequent MRCI meth-
od aims at quantitative treatment of dynamical electron correla-
tion. The most prominent restrictions of traditional CI
procedures are the lack of size-consistency and the exponential
growth of theN-particle expansion space. The latter initiated the
development of various approximate CI variants achieving
reductions of the number of variational parameters by CSF
selection, contraction, or reparametrization schemes of various
forms, and also multireference methods that follow completely
different approaches. The size-consistency, or in this context size-
extensivity, error is related to the presence of unlinked clusters in
the truncated CI equations which can be dealt with by inclusion
of (approximate) higher excitation contribution to the energy
expression or equations. In the former case the correction takes
the form of a posteriori corrections or extrapolations of CI
results, while in the latter case a new method is defined. These
new CEPA-type methods do not necessarily deal consistently
with the EPV terms, causing overestimation of the correction.
Also, the applied modifications often ruin the structure of the CI
equation, destroying the possibility of straightforward calculation
of analytic gradients and properties; the central tasks of compu-
tational chemistry, such as the evaluation of critical points on
the PES, is thereby restricted to relatively expensive numerical
gradient evaluation.

The last two decades have witnessed a remarkable develop-
ment of relativistic MCSCF and MRCI methods, and calculations
on general molecules of chemical interest with high accuracy
are becoming feasible. The computational effort is demanding
for both nonrelativistic and, in particular, full four-component
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relativistic multireference methods, and the use of advanced
parallel (super-) computers is inevitable. Hence, the general
current status of parallel computer architectures and the implica-
tions of implementations of multireference methods on
(massively) parallel were discussed. Replacing disk storage by
distributed memory, trading computer time for reduced data
storage requirements, and data-parallel algorithms are important
and common underlying concepts. In particular, schemes that
reduce the exponential growth of the number of variational para-
meters of the FCI expansion to low-order polynomial dependence,
while still maintaining small errors, are of great current interest.

A variety of applications from a selection of different fields
including approximate CI and size-consistency-corrected methods,
applications of multireference methods to excited states, gradients,
and nonadiabatic surface-hopping dynamics, and relativistic quan-
tum chemistry have been discussed. Several illustrative applications
with references to the original works have been included.

Finally, the dependencies and intricacies that can arise from
the separate optimization of the one- and N-particle bases were
discussed. Most notable is the fact that it is difficult for the
electron correlation method to compensate for an inappropriate
one-particle MO basis except at the full-CI limit.

Perspectives on the future of quantum chemical multirefer-
ence methods are not easy to assess. As the results collected in
this review show, multireference methods are indispensible in
many very important application areas. It is also clear that
dynamical electron correlation is necessary to obtain the required
accuracy; i.e., lower level valence-only multireference methods
such as MCSCF are not always satisfactory. In the single-
reference realm, coupled-cluster theory brought about substan-
tial improvement of the quality of the results, and a similar impact
is expected when an all-purpose MRCC method is developed.
Despite large efforts, no suchMRCCmethod exists at the time of
writing this review (see also the review by Lyakh and Bartlett860

in this issue); thus MRCI, and in particular extensivity corrected
versions such as MR-ACPF and MR-AQCC, are the primary
choice for applications. Note also that the MR-CISD (including
MR-ACPF andMR-AQCC) are expected to give closer results to
the hypothetical MRCC level than does SR-CI compared to SR-
CC since a much larger amount of correlation is included with
the MR wave functions. From the technical point of view, the
availability of ever growing computational resources, in terms of
computer power, memory, and storage capabilities, will certainly
continue, albeit the characteristics of the computational hard-
ware are likely to change dramatically; this will have a profound
impact on algorithm choices as the software strives to match the
inherent capabilities of the hardware. Relatively simple data-
parallel and data-local compute kernels, preferentially combined
with on-the-fly computation of large amounts of internal data
(such as integrals and coupling coefficients) followed by im-
mediate contraction to compact representations (e.g., Fock
matrices), are likely to benefit from the upcoming hardware.
More conventional techniques relying on the processing of large
amounts of precomputed data, stored either in distributed
memory (or much worse on external disks), will likely encounter
difficulties in this new environment. Generally, methods that
allow for the reduction of the volume of data to be stored and
manipulated have the most promising potential. The current
revival of interest in multireference methods is due to their many
inherent advantages in chemical applications and also, in part, to
the success in adapting and developing these methods to take
advantage of these new hardware characteristics.
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